summaryrefslogtreecommitdiff
path: root/src/Rips_complex/test/test_rips_complex.cpp
blob: 1225f8df4e0a8ae6765de9fbfa0c94d66d886df3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       Vincent Rouvreau
 *
 *    Copyright (C) 2016 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE "rips_complex"
#include <boost/test/unit_test.hpp>

#include <cmath>  // float comparison
#include <limits>
#include <string>
#include <vector>
#include <algorithm>    // std::max

#include <gudhi/Rips_complex.h>
#include <gudhi/Sparse_rips_complex.h>
// to construct Rips_complex from a OFF file of points
#include <gudhi/Points_off_io.h>
#include <gudhi/Simplex_tree.h>
#include <gudhi/distance_functions.h>
#include <gudhi/reader_utils.h>
#include <gudhi/Unitary_tests_utils.h>

// Type definitions
using Point = std::vector<double>;
using Simplex_tree = Gudhi::Simplex_tree<>;
using Filtration_value = Simplex_tree::Filtration_value;
using Rips_complex = Gudhi::rips_complex::Rips_complex<Simplex_tree::Filtration_value>;
using Sparse_rips_complex = Gudhi::rips_complex::Sparse_rips_complex<Simplex_tree::Filtration_value>;
using Distance_matrix = std::vector<std::vector<Filtration_value>>;

BOOST_AUTO_TEST_CASE(RIPS_DOC_OFF_file) {
  // ----------------------------------------------------------------------------
  //
  // Init of a Rips complex from a OFF file
  //
  // ----------------------------------------------------------------------------
  std::string off_file_name("alphacomplexdoc.off");
  double rips_threshold = 12.0;
  std::cout << "========== OFF FILE NAME = " << off_file_name << " - Rips threshold=" <<
      rips_threshold << "==========" << std::endl;

  Gudhi::Points_off_reader<Point> off_reader(off_file_name);
  Rips_complex rips_complex_from_file(off_reader.get_point_cloud(), rips_threshold, Gudhi::Euclidean_distance());

  const int DIMENSION_1 = 1;
  Simplex_tree st;
  rips_complex_from_file.create_complex(st, DIMENSION_1);
  std::cout << "st.dimension()=" << st.dimension() << std::endl;
  BOOST_CHECK(st.dimension() == DIMENSION_1);

  const int NUMBER_OF_VERTICES = 7;
  std::cout << "st.num_vertices()=" << st.num_vertices() << std::endl;
  BOOST_CHECK(st.num_vertices() == NUMBER_OF_VERTICES);

  std::cout << "st.num_simplices()=" << st.num_simplices() << std::endl;
  BOOST_CHECK(st.num_simplices() == 18);

  // Check filtration values of vertices is 0.0
  for (auto f_simplex : st.skeleton_simplex_range(0)) {
    BOOST_CHECK(st.filtration(f_simplex) == 0.0);
  }

  // Check filtration values of edges
  for (auto f_simplex : st.skeleton_simplex_range(DIMENSION_1)) {
    if (DIMENSION_1 == st.dimension(f_simplex)) {
      std::vector<Point> vp;
      std::cout << "vertex = (";
      for (auto vertex : st.simplex_vertex_range(f_simplex)) {
        std::cout << vertex << ",";
        vp.push_back(off_reader.get_point_cloud().at(vertex));
      }
      std::cout << ") - distance =" << Gudhi::Euclidean_distance()(vp.at(0), vp.at(1)) <<
          " - filtration =" << st.filtration(f_simplex) << std::endl;
      BOOST_CHECK(vp.size() == 2);
      GUDHI_TEST_FLOAT_EQUALITY_CHECK(st.filtration(f_simplex), Gudhi::Euclidean_distance()(vp.at(0), vp.at(1)));
    }
  }

  const int DIMENSION_2 = 2;
  Simplex_tree st2;
  rips_complex_from_file.create_complex(st2, DIMENSION_2);
  std::cout << "st2.dimension()=" << st2.dimension() << std::endl;
  BOOST_CHECK(st2.dimension() == DIMENSION_2);
  
  std::cout << "st2.num_vertices()=" << st2.num_vertices() << std::endl;
  BOOST_CHECK(st2.num_vertices() == NUMBER_OF_VERTICES);

  std::cout << "st2.num_simplices()=" << st2.num_simplices() << std::endl;
  BOOST_CHECK(st2.num_simplices() == 23);

  Simplex_tree::Filtration_value f01 = st2.filtration(st2.find({0, 1}));
  Simplex_tree::Filtration_value f02 = st2.filtration(st2.find({0, 2}));
  Simplex_tree::Filtration_value f12 = st2.filtration(st2.find({1, 2}));
  Simplex_tree::Filtration_value f012 = st2.filtration(st2.find({0, 1, 2}));
  std::cout << "f012= " << f012 << " | f01= " << f01 << " - f02= " << f02 << " - f12= " << f12 << std::endl;
  GUDHI_TEST_FLOAT_EQUALITY_CHECK(f012, std::max(f01, std::max(f02,f12)));
  
  Simplex_tree::Filtration_value f45 = st2.filtration(st2.find({4, 5}));
  Simplex_tree::Filtration_value f56 = st2.filtration(st2.find({5, 6}));
  Simplex_tree::Filtration_value f46 = st2.filtration(st2.find({4, 6}));
  Simplex_tree::Filtration_value f456 = st2.filtration(st2.find({4, 5, 6}));
  std::cout << "f456= " << f456 << " | f45= " << f45 << " - f56= " << f56 << " - f46= " << f46 << std::endl;
  GUDHI_TEST_FLOAT_EQUALITY_CHECK(f456, std::max(f45, std::max(f56,f46)));

  const int DIMENSION_3 = 3;
  Simplex_tree st3;
  rips_complex_from_file.create_complex(st3, DIMENSION_3);
  std::cout << "st3.dimension()=" << st3.dimension() << std::endl;
  BOOST_CHECK(st3.dimension() == DIMENSION_3);
  
  std::cout << "st3.num_vertices()=" << st3.num_vertices() << std::endl;
  BOOST_CHECK(st3.num_vertices() == NUMBER_OF_VERTICES);

  std::cout << "st3.num_simplices()=" << st3.num_simplices() << std::endl;
  BOOST_CHECK(st3.num_simplices() == 24);

  Simplex_tree::Filtration_value f123 = st3.filtration(st3.find({1, 2, 3}));
  Simplex_tree::Filtration_value f013 = st3.filtration(st3.find({0, 1, 3}));
  Simplex_tree::Filtration_value f023 = st3.filtration(st3.find({0, 2, 3}));
  Simplex_tree::Filtration_value f0123 = st3.filtration(st3.find({0, 1, 2, 3}));
  std::cout << "f0123= " << f0123 << " | f012= " << f012 << " - f123= " << f123 << " - f013= " << f013 <<
      " - f023= " << f023 << std::endl;
  GUDHI_TEST_FLOAT_EQUALITY_CHECK(f0123, std::max(f012, std::max(f123, std::max(f013, f023))));

}

using Vector_of_points = std::vector<Point>;

bool is_point_in_list(Vector_of_points points_list, Point point) {
  for (auto& point_in_list : points_list) {
    if (point_in_list == point) {
      return true;  // point found
    }
  }
  return false;  // point not found
}

class Custom_square_euclidean_distance {
 public:
  template< typename Point >
  auto operator()(const Point& p1, const Point& p2) -> typename Point::value_type {
    auto it1 = p1.begin();
    auto it2 = p2.begin();
    typename Point::value_type dist = 0.;
    for (; it1 != p1.end(); ++it1, ++it2) {
      typename Point::value_type tmp = (*it1) - (*it2);
      dist += tmp*tmp;
    }
    return dist;
  }
};

BOOST_AUTO_TEST_CASE(Rips_complex_from_points) {
  // ----------------------------------------------------------------------------
  // Init of a list of points
  // ----------------------------------------------------------------------------
  Vector_of_points points;
  std::vector<double> coords = { 0.0, 0.0, 0.0, 1.0 };
  points.push_back(Point(coords.begin(), coords.end()));
  coords = { 0.0, 0.0, 1.0, 0.0 };
  points.push_back(Point(coords.begin(), coords.end()));
  coords = { 0.0, 1.0, 0.0, 0.0 };
  points.push_back(Point(coords.begin(), coords.end()));
  coords = { 1.0, 0.0, 0.0, 0.0 };
  points.push_back(Point(coords.begin(), coords.end()));

  // ----------------------------------------------------------------------------
  // Init of a Rips complex from the list of points
  // ----------------------------------------------------------------------------
  Rips_complex rips_complex_from_points(points, 2.0, Custom_square_euclidean_distance());

  std::cout << "========== Rips_complex_from_points ==========" << std::endl;
  Simplex_tree st;
  const int DIMENSION = 3;
  rips_complex_from_points.create_complex(st, DIMENSION);

  // Another way to check num_simplices
  std::cout << "Iterator on Rips complex simplices in the filtration order, with [filtration value]:" << std::endl;
  int num_simplices = 0;
  for (auto f_simplex : st.filtration_simplex_range()) {
    num_simplices++;
    std::cout << "   ( ";
    for (auto vertex : st.simplex_vertex_range(f_simplex)) {
      std::cout << vertex << " ";
    }
    std::cout << ") -> " << "[" << st.filtration(f_simplex) << "] ";
    std::cout << std::endl;
  }
  BOOST_CHECK(num_simplices == 15);
  std::cout << "st.num_simplices()=" << st.num_simplices() << std::endl;
  BOOST_CHECK(st.num_simplices() == 15);

  std::cout << "st.dimension()=" << st.dimension() << std::endl;
  BOOST_CHECK(st.dimension() == DIMENSION);
  std::cout << "st.num_vertices()=" << st.num_vertices() << std::endl;
  BOOST_CHECK(st.num_vertices() == 4);

  for (auto f_simplex : st.filtration_simplex_range()) {
    std::cout << "dimension(" << st.dimension(f_simplex) << ") - f = " << st.filtration(f_simplex) << std::endl;
    switch (st.dimension(f_simplex)) {
      case 0:
        GUDHI_TEST_FLOAT_EQUALITY_CHECK(st.filtration(f_simplex), 0.0);
        break;
      case 1:
      case 2:
      case 3:
        GUDHI_TEST_FLOAT_EQUALITY_CHECK(st.filtration(f_simplex), 2.0);
        break;
      default:
        BOOST_CHECK(false);  // Shall not happen
        break;
    }
  }
}

BOOST_AUTO_TEST_CASE(Sparse_rips_complex_from_points) {
  // This is a clone of the test above
  // ----------------------------------------------------------------------------
  // Init of a list of points
  // ----------------------------------------------------------------------------
  Vector_of_points points;
  std::vector<double> coords = { 0.0, 0.0, 0.0, 1.0 };
  points.push_back(Point(coords.begin(), coords.end()));
  coords = { 0.0, 0.0, 1.0, 0.0 };
  points.push_back(Point(coords.begin(), coords.end()));
  coords = { 0.0, 1.0, 0.0, 0.0 };
  points.push_back(Point(coords.begin(), coords.end()));
  coords = { 1.0, 0.0, 0.0, 0.0 };
  points.push_back(Point(coords.begin(), coords.end()));

  // ----------------------------------------------------------------------------
  // Init of a Rips complex from the list of points
  // ----------------------------------------------------------------------------
  // .001 is small enough that we get a deterministic result matching the exact Rips
  Sparse_rips_complex sparse_rips(points, Custom_square_euclidean_distance(), .001);

  std::cout << "========== Sparse_rips_complex_from_points ==========" << std::endl;
  Simplex_tree st;
  const int DIMENSION = 3;
  sparse_rips.create_complex(st, DIMENSION);

  // Another way to check num_simplices
  std::cout << "Iterator on Rips complex simplices in the filtration order, with [filtration value]:" << std::endl;
  int num_simplices = 0;
  for (auto f_simplex : st.filtration_simplex_range()) {
    num_simplices++;
    std::cout << "   ( ";
    for (auto vertex : st.simplex_vertex_range(f_simplex)) {
      std::cout << vertex << " ";
    }
    std::cout << ") -> " << "[" << st.filtration(f_simplex) << "] ";
    std::cout << std::endl;
  }
  BOOST_CHECK(num_simplices == 15);
  std::cout << "st.num_simplices()=" << st.num_simplices() << std::endl;
  BOOST_CHECK(st.num_simplices() == 15);

  std::cout << "st.dimension()=" << st.dimension() << std::endl;
  BOOST_CHECK(st.dimension() == DIMENSION);
  std::cout << "st.num_vertices()=" << st.num_vertices() << std::endl;
  BOOST_CHECK(st.num_vertices() == 4);

  for (auto f_simplex : st.filtration_simplex_range()) {
    std::cout << "dimension(" << st.dimension(f_simplex) << ") - f = " << st.filtration(f_simplex) << std::endl;
    switch (st.dimension(f_simplex)) {
      case 0:
        GUDHI_TEST_FLOAT_EQUALITY_CHECK(st.filtration(f_simplex), 0.0);
        break;
      case 1:
      case 2:
      case 3:
        GUDHI_TEST_FLOAT_EQUALITY_CHECK(st.filtration(f_simplex), 2.0);
        break;
      default:
        BOOST_CHECK(false);  // Shall not happen
        break;
    }
  }
}

BOOST_AUTO_TEST_CASE(Rips_doc_csv_file) {
  // ----------------------------------------------------------------------------
  //
  // Init of a Rips complex from a OFF file
  //
  // ----------------------------------------------------------------------------
  std::string csv_file_name("full_square_distance_matrix.csv");
  double rips_threshold = 12.0;
  std::cout << "========== CSV FILE NAME = " << csv_file_name << " - Rips threshold=" <<
      rips_threshold << "==========" << std::endl;

  Distance_matrix distances = Gudhi::read_lower_triangular_matrix_from_csv_file<Filtration_value>(csv_file_name);
  Rips_complex rips_complex_from_file(distances, rips_threshold);

  const int DIMENSION_1 = 1;
  Simplex_tree st;
  rips_complex_from_file.create_complex(st, DIMENSION_1);
  std::cout << "st.dimension()=" << st.dimension() << std::endl;
  BOOST_CHECK(st.dimension() == DIMENSION_1);

  const int NUMBER_OF_VERTICES = 7;
  std::cout << "st.num_vertices()=" << st.num_vertices() << std::endl;
  BOOST_CHECK(st.num_vertices() == NUMBER_OF_VERTICES);

  std::cout << "st.num_simplices()=" << st.num_simplices() << std::endl;
  BOOST_CHECK(st.num_simplices() == 18);

  // Check filtration values of vertices is 0.0
  for (auto f_simplex : st.skeleton_simplex_range(0)) {
    BOOST_CHECK(st.filtration(f_simplex) == 0.0);
  }

  // Check filtration values of edges
  for (auto f_simplex : st.skeleton_simplex_range(DIMENSION_1)) {
    if (DIMENSION_1 == st.dimension(f_simplex)) {
      std::vector<Simplex_tree::Vertex_handle> vvh;
      std::cout << "vertex = (";
      for (auto vertex : st.simplex_vertex_range(f_simplex)) {
        std::cout << vertex << ",";
        vvh.push_back(vertex);
      }
      std::cout << ") - filtration =" << st.filtration(f_simplex) << std::endl;
      BOOST_CHECK(vvh.size() == 2);
      GUDHI_TEST_FLOAT_EQUALITY_CHECK(st.filtration(f_simplex), distances[vvh.at(0)][vvh.at(1)]);
    }
  }

  const int DIMENSION_2 = 2;
  Simplex_tree st2;
  rips_complex_from_file.create_complex(st2, DIMENSION_2);
  std::cout << "st2.dimension()=" << st2.dimension() << std::endl;
  BOOST_CHECK(st2.dimension() == DIMENSION_2);
  
  std::cout << "st2.num_vertices()=" << st2.num_vertices() << std::endl;
  BOOST_CHECK(st2.num_vertices() == NUMBER_OF_VERTICES);

  std::cout << "st2.num_simplices()=" << st2.num_simplices() << std::endl;
  BOOST_CHECK(st2.num_simplices() == 23);

  Simplex_tree::Filtration_value f01 = st2.filtration(st2.find({0, 1}));
  Simplex_tree::Filtration_value f02 = st2.filtration(st2.find({0, 2}));
  Simplex_tree::Filtration_value f12 = st2.filtration(st2.find({1, 2}));
  Simplex_tree::Filtration_value f012 = st2.filtration(st2.find({0, 1, 2}));
  std::cout << "f012= " << f012 << " | f01= " << f01 << " - f02= " << f02 << " - f12= " << f12 << std::endl;
  GUDHI_TEST_FLOAT_EQUALITY_CHECK(f012, std::max(f01, std::max(f02,f12)));
  
  Simplex_tree::Filtration_value f45 = st2.filtration(st2.find({4, 5}));
  Simplex_tree::Filtration_value f56 = st2.filtration(st2.find({5, 6}));
  Simplex_tree::Filtration_value f46 = st2.filtration(st2.find({4, 6}));
  Simplex_tree::Filtration_value f456 = st2.filtration(st2.find({4, 5, 6}));
  std::cout << "f456= " << f456 << " | f45= " << f45 << " - f56= " << f56 << " - f46= " << f46 << std::endl;
  GUDHI_TEST_FLOAT_EQUALITY_CHECK(f456, std::max(f45, std::max(f56,f46)));

  const int DIMENSION_3 = 3;
  Simplex_tree st3;
  rips_complex_from_file.create_complex(st3, DIMENSION_3);
  std::cout << "st3.dimension()=" << st3.dimension() << std::endl;
  BOOST_CHECK(st3.dimension() == DIMENSION_3);
  
  std::cout << "st3.num_vertices()=" << st3.num_vertices() << std::endl;
  BOOST_CHECK(st3.num_vertices() == NUMBER_OF_VERTICES);

  std::cout << "st3.num_simplices()=" << st3.num_simplices() << std::endl;
  BOOST_CHECK(st3.num_simplices() == 24);

  Simplex_tree::Filtration_value f123 = st3.filtration(st3.find({1, 2, 3}));
  Simplex_tree::Filtration_value f013 = st3.filtration(st3.find({0, 1, 3}));
  Simplex_tree::Filtration_value f023 = st3.filtration(st3.find({0, 2, 3}));
  Simplex_tree::Filtration_value f0123 = st3.filtration(st3.find({0, 1, 2, 3}));
  std::cout << "f0123= " << f0123 << " | f012= " << f012 << " - f123= " << f123 << " - f013= " << f013 <<
      " - f023= " << f023 << std::endl;
  GUDHI_TEST_FLOAT_EQUALITY_CHECK(f0123, std::max(f012, std::max(f123, std::max(f013, f023))));

}

#ifdef GUDHI_DEBUG
BOOST_AUTO_TEST_CASE(Rips_create_complex_throw) {
  // ----------------------------------------------------------------------------
  //
  // Init of a Rips complex from a OFF file
  //
  // ----------------------------------------------------------------------------
  std::string off_file_name("alphacomplexdoc.off");
  double rips_threshold = 12.0;
  std::cout << "========== OFF FILE NAME = " << off_file_name << " - Rips threshold=" <<
      rips_threshold << "==========" << std::endl;

  Gudhi::Points_off_reader<Point> off_reader(off_file_name);
  Rips_complex rips_complex_from_file(off_reader.get_point_cloud(), rips_threshold, Gudhi::Euclidean_distance());

  Simplex_tree stree;
  std::vector<int> simplex = {0, 1, 2};
  stree.insert_simplex_and_subfaces(simplex);
  std::cout << "Check exception throw in debug mode" << std::endl;
  // throw excpt because stree is not empty
  BOOST_CHECK_THROW (rips_complex_from_file.create_complex(stree, 1), std::invalid_argument);
}
#endif