summaryrefslogtreecommitdiff
path: root/src/Skeleton_blocker/include/gudhi/Skeleton_blocker/Skeleton_blocker_sub_complex.h
blob: a9e50d11eef6eb9d437e12eff58f16812344cdfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       David Salinas
 *
 *    Copyright (C) 2014 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#ifndef SKELETON_BLOCKER_SKELETON_BLOCKER_SUB_COMPLEX_H_
#define SKELETON_BLOCKER_SKELETON_BLOCKER_SUB_COMPLEX_H_

#include <gudhi/Skeleton_blocker_complex.h>
#include <gudhi/Skeleton_blocker/Skeleton_blocker_simplex.h>
#include <gudhi/Debug_utils.h>

#include <map>
#include <vector>

namespace Gudhi {

namespace skeleton_blocker {

/**
 * @brief Simplicial subcomplex of a complex represented by a skeleton/blockers pair.
 * @extends Skeleton_blocker_complex
 * @details Stores a subcomplex of a simplicial complex.
 * To simplify explanations below, we will suppose that :
 * - K is the root simplicial complex
 * - L is a subcomplex of K.
 *
 * One vertex of K may exists in L but with a different address.
 * To be able to locate the vertices in K from vertices of L, the class
 * stores a map 'adresses' between vertices of K and vertices of L.
 *
 * Note that the type for handle of vertices of L is 'Vertex_handle' and
 * the type for handle of vertices of K is 'Root_vertex_handle'.
 *
 * The template ComplexType is type of the root complex. It allows to know
 * if the subcomplex is geometric or not.
 * It has to be either 'Skeleton_blockers_complex' or 'Skeleton_blockers_geometric_complex'.
 *
 */
template<typename ComplexType>
class Skeleton_blocker_sub_complex : public ComplexType {
 protected:
  template<class T> friend class Skeleton_blocker_link_complex;

  typedef typename ComplexType::Graph Graph;
  typedef typename ComplexType::Edge_handle Edge_handle;

  typedef typename ComplexType::boost_vertex_handle boost_vertex_handle;

 public:
  using ComplexType::add_vertex;
  using ComplexType::add_edge_without_blockers;
  using ComplexType::add_blocker;

  typedef typename ComplexType::Vertex_handle Vertex_handle;
  typedef typename ComplexType::Root_vertex_handle Root_vertex_handle;
  typedef typename ComplexType::Simplex Simplex;
  typedef typename ComplexType::Root_simplex_handle Root_simplex_handle;

 protected:
  /**
   * @brief Determines whether all proper faces of simplex 'sigma' belong to 'link1' \cup 'link2'
   * where 'link1' and 'link2' are subcomplexes of the same complex of type ComplexType
   */
  typedef std::map<Root_vertex_handle, Vertex_handle> IdAddressMap;
  typedef typename IdAddressMap::value_type AddressPair;
  typedef typename IdAddressMap::iterator IdAddressMapIterator;
  typedef typename IdAddressMap::const_iterator IdAddressMapConstIterator;
  std::map<Root_vertex_handle, Vertex_handle> adresses;

 public:
  /**
   * Add a vertex 'global' of K to L. When added to L, this vertex will receive
   * another number, addresses(global), its local adress.
   * return the adress where the vertex lay on L.
   * The vertex corresponding to 'global' must not be already present
   * in the complex.
   */
  Vertex_handle add_vertex(Root_vertex_handle global) {
    assert(!this->contains_vertex(global));
    Vertex_handle address(boost::add_vertex(this->skeleton));
    this->num_vertices_++;
    (*this)[address].activate();
    (*this)[address].set_id(global);
    adresses.insert(AddressPair(global, address));
    this->degree_.push_back(0);
    return address;
  }

  /**
   * Add an edge (v1_root,v2_root) to the sub-complex.
   * It assumes that both vertices corresponding to v1_root and v2_root are present
   * in the sub-complex.
   */
  void add_edge_without_blockers(Root_vertex_handle v1_root, Root_vertex_handle v2_root) {
    auto v1_sub(this->get_address(v1_root));
    auto v2_sub(this->get_address(v2_root));
    assert(v1_sub && v2_sub);
    this->ComplexType::add_edge_without_blockers(*v1_sub, *v2_sub);
  }

  /**
   * Add a blocker to the sub-complex.
   * It assumes that all vertices of blocker_root are present
   * in the sub-complex.
   */
  void add_blocker(const Root_simplex_handle& blocker_root) {
    auto blocker_sub = this->get_address(blocker_root);
    assert(blocker_sub);
    this->add_blocker(new Simplex(*blocker_sub));
  }

 public:
  /**
   * Constructs the restricted complex of 'parent_complex' to
   * vertices of 'simplex'.
   */
  void make_restricted_complex(const ComplexType & parent_complex,
                               const Simplex& simplex) {
    this->clear();
    // add vertices to the sub complex
    for (auto x : simplex) {
      assert(parent_complex.contains_vertex(x));
      auto x_local = this->add_vertex(parent_complex[x].get_id());
      (*this)[x_local] = parent_complex[x];
    }

    // add edges to the sub complex
    for (auto x : simplex) {
      // x_neigh is the neighbor of x intersected with vertices_simplex
      Simplex x_neigh;
      parent_complex.add_neighbours(x, x_neigh, true);
      x_neigh.intersection(simplex);
      for (auto y : x_neigh) {
        this->add_edge_without_blockers(parent_complex[x].get_id(), parent_complex[y].get_id());
      }
    }

    // add blockers to the sub complex
    for (auto blocker : parent_complex.const_blocker_range()) {
      // check if it is the first time we encounter the blocker
      if (simplex.contains(*blocker)) {
        Root_simplex_handle blocker_root(parent_complex.get_id(*(blocker)));
        Simplex blocker_restr(
                              *(this->get_simplex_address(blocker_root)));
        this->add_blocker(new Simplex(blocker_restr));
      }
    }
  }

  void clear() {
    adresses.clear();
    ComplexType::clear();
  }

  /**
   * Compute the local vertex in L corresponding to the vertex global in K.
   * runs in O(log n) if n = num_vertices()
   */
  boost::optional<Vertex_handle> get_address(Root_vertex_handle global) const {
    boost::optional < Vertex_handle > res;
    IdAddressMapConstIterator it = adresses.find(global);
    if (it == adresses.end())
      res.reset();
    else
      res = (*it).second;
    return res;
  }

  // /**
  //  * Allocates a simplex in L corresponding to the simplex s in K
  //  * with its local adresses and returns an AddressSimplex.
  //  */
  // boost::optional<Simplex> get_address(const Root_simplex_handle & s) const;

  // private:
  /**
   *  same as get_address except that it will return a simplex in any case.
   *  The vertices that were not found are not added.
   */
  // @remark should be private but problem with VS

  std::vector<boost::optional<Vertex_handle> > get_addresses(
                                                             const Root_simplex_handle & s) const {
    std::vector < boost::optional<Vertex_handle> > res;
    for (auto i : s) {
      res.push_back(get_address(i));
    }
    return res;
  }
};

/**
 * @remark remarque perte de temps a creer un nouveau simplexe a chaque fois
 * alors qu'on pourrait utiliser a la place de 'addresses_sigma_in_link'
 * un simplex avec des valeurs sp�ciales ComplexDS::null_vertex par exemple
 * pour indiquer qu'un vertex n'appartient pas au complex
 */
template<typename ComplexType>
bool proper_face_in_union(
                          Skeleton_blocker_sub_complex<ComplexType> & link,
                          std::vector<boost::optional<typename ComplexType::Vertex_handle> > & addresses_sigma_in_link,
                          std::size_t vertex_to_be_ignored) {
  // we test that all vertices of 'addresses_sigma_in_link' but 'vertex_to_be_ignored'
  // are in link1 if it is the case we construct the corresponding simplex
  bool vertices_sigma_are_in_link = true;
  typename ComplexType::Simplex sigma_in_link;
  for (std::size_t i = 0; i < addresses_sigma_in_link.size(); ++i) {
    if (i != vertex_to_be_ignored) {
      if (!addresses_sigma_in_link[i]) {
        vertices_sigma_are_in_link = false;
        break;
      } else {
        sigma_in_link.add_vertex(*addresses_sigma_in_link[i]);
      }
    }
  }
  // If one of vertices of the simplex is not in the complex then it returns false
  // Otherwise, it tests if the simplex is in the complex
  return vertices_sigma_are_in_link && link.contains(sigma_in_link);
}

// Remark: this function should be friend in order to leave get_adresses private
// however doing so seemes currently not possible due to a visual studio bug c2668
// "the compiler does not support partial ordering of template functions as specified in the C++ Standard"
// http://www.serkey.com/error-c2668-ambiguous-call-to-overloaded-function-bb45ft.html

template<typename ComplexType>
bool proper_faces_in_union(
                           Skeleton_blocker_simplex<typename ComplexType::Root_vertex_handle> & sigma,
                           Skeleton_blocker_sub_complex<ComplexType> & link1,
                           Skeleton_blocker_sub_complex<ComplexType> & link2) {
  typedef typename ComplexType::Vertex_handle Vertex_handle;
  std::vector < boost::optional<Vertex_handle> > addresses_sigma_in_link1 =
      link1.get_addresses(sigma);
  std::vector < boost::optional<Vertex_handle> > addresses_sigma_in_link2 =
      link2.get_addresses(sigma);

  for (std::size_t current_index = 0; current_index < addresses_sigma_in_link1.size();
       ++current_index) {
    if (!proper_face_in_union(link1, addresses_sigma_in_link1, current_index)
        && !proper_face_in_union(link2, addresses_sigma_in_link2,
                                 current_index)) {
      return false;
    }
  }
  return true;
}

}  // namespace skeleton_blocker

namespace skbl = skeleton_blocker;

}  // namespace Gudhi

#endif  // SKELETON_BLOCKER_SKELETON_BLOCKER_SUB_COMPLEX_H_