summaryrefslogtreecommitdiff
path: root/src/Skeleton_blocker/include/gudhi/Skeleton_blocker_complex.h
blob: 125c63873bf3691966239c0d1e03a13050350e46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
/*    This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
 *    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
 *    Author(s):       David Salinas
 *
 *    Copyright (C) 2014 Inria
 *
 *    Modification(s):
 *      - YYYY/MM Author: Description of the modification
 */

#ifndef SKELETON_BLOCKER_COMPLEX_H_
#define SKELETON_BLOCKER_COMPLEX_H_

#include <gudhi/Skeleton_blocker/iterators/Skeleton_blockers_iterators.h>
#include <gudhi/Skeleton_blocker_link_complex.h>
#include <gudhi/Skeleton_blocker/Skeleton_blocker_link_superior.h>
#include <gudhi/Skeleton_blocker/Skeleton_blocker_sub_complex.h>
#include <gudhi/Skeleton_blocker/Skeleton_blocker_simplex.h>
#include <gudhi/Skeleton_blocker/Skeleton_blocker_complex_visitor.h>
#include <gudhi/Skeleton_blocker/internal/Top_faces.h>
#include <gudhi/Skeleton_blocker/internal/Trie.h>
#include <gudhi/Debug_utils.h>

#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/connected_components.hpp>
#include <boost/iterator/transform_iterator.hpp>
#include <boost/range/adaptor/map.hpp>

#include <iostream>
#include <fstream>
#include <sstream>
#include <memory>
#include <map>
#include <list>
#include <set>
#include <vector>
#include <string>
#include <algorithm>
#include <utility>

namespace Gudhi {

namespace skeleton_blocker {

/**
 *@class Skeleton_blocker_complex
 *@brief Abstract Simplicial Complex represented with a skeleton/blockers pair.
 *@ingroup skbl
 */
template<class SkeletonBlockerDS>
class Skeleton_blocker_complex {
  template<class ComplexType> friend class Vertex_iterator;
  template<class ComplexType> friend class Neighbors_vertices_iterator;
  template<class ComplexType> friend class Edge_iterator;
  template<class ComplexType> friend class Edge_around_vertex_iterator;

  template<class ComplexType> friend class Skeleton_blocker_link_complex;
  template<class ComplexType> friend class Skeleton_blocker_link_superior;
  template<class ComplexType> friend class Skeleton_blocker_sub_complex;

 public:
  /**
   * @brief The type of stored vertex node, specified by the template SkeletonBlockerDS
   */
  typedef typename SkeletonBlockerDS::Graph_vertex Graph_vertex;

  /**
   * @brief The type of stored  edge node, specified by the template SkeletonBlockerDS
   */
  typedef typename SkeletonBlockerDS::Graph_edge Graph_edge;

  typedef typename SkeletonBlockerDS::Root_vertex_handle Root_vertex_handle;

  /**
   * @brief The type of an handle to a vertex of the complex.
   */
  typedef typename SkeletonBlockerDS::Vertex_handle Vertex_handle;
  typedef typename Root_vertex_handle::boost_vertex_handle boost_vertex_handle;

  /**
   * @brief A ordered set of integers that represents a simplex.
   */
  typedef Skeleton_blocker_simplex<Vertex_handle> Simplex;
  typedef Skeleton_blocker_simplex<Root_vertex_handle> Root_simplex_handle;

  /**
   * @brief Handle to a blocker of the complex.
   */
  typedef Simplex* Blocker_handle;

  typedef typename Root_simplex_handle::Simplex_vertex_const_iterator Root_simplex_iterator;
  typedef typename Simplex::Simplex_vertex_const_iterator Simplex_handle_iterator;

 protected:
  typedef typename boost::adjacency_list<boost::setS,  // edges
  boost::vecS,  // vertices
  boost::undirectedS, Graph_vertex, Graph_edge> Graph;
  // todo/remark : edges are not sorted, it heavily penalizes computation for SuperiorLink
  // (eg Link with greater vertices)
  // that burdens simplex iteration / complex initialization via list of simplices.
  // to avoid that, one should modify the graph by storing two lists of adjacency for every
  // vertex, the one with superior and the one with lower vertices, that way there is
  // no more extra cost for computation of SuperiorLink
  typedef typename boost::graph_traits<Graph>::vertex_iterator boost_vertex_iterator;
  typedef typename boost::graph_traits<Graph>::edge_iterator boost_edge_iterator;

 protected:
  typedef typename boost::graph_traits<Graph>::adjacency_iterator boost_adjacency_iterator;

 public:
  /**
   * @brief Handle to an edge of the complex.
   */
  typedef typename boost::graph_traits<Graph>::edge_descriptor Edge_handle;

 protected:
  typedef std::multimap<Vertex_handle, Simplex *> BlockerMap;
  typedef typename std::multimap<Vertex_handle, Simplex *>::value_type BlockerPair;
  typedef typename std::multimap<Vertex_handle, Simplex *>::iterator BlockerMapIterator;
  typedef typename std::multimap<Vertex_handle, Simplex *>::const_iterator BlockerMapConstIterator;

 protected:
  size_t num_vertices_;
  size_t num_blockers_;

  typedef Skeleton_blocker_complex_visitor<Vertex_handle> Visitor;
  // typedef Visitor* Visitor_ptr;
  Visitor* visitor;

  /**
   * @details If 'x' is a Vertex_handle of a vertex in the complex then degree[x] = d is its degree.
   *
   * This quantity is updated when adding/removing edge.
   *
   * This is useful because the operation
   * list.size() is done in linear time.
   */
  std::vector<boost_vertex_handle> degree_;
  Graph skeleton; /** 1-skeleton of the simplicial complex. */

  /** Each vertex can access to the blockers passing through it. */
  BlockerMap blocker_map_;

 public:
  /////////////////////////////////////////////////////////////////////////////
  /** @name Constructors, Destructors
   */
  //@{

  /**
   *@brief constructs a simplicial complex with a given number of vertices and a visitor.
   */
  explicit Skeleton_blocker_complex(size_t num_vertices_ = 0, Visitor* visitor_ = NULL)
      : visitor(visitor_) {
    clear();
    for (size_t i = 0; i < num_vertices_; ++i) {
      add_vertex();
    }
  }

 private:
  // typedef Trie<Skeleton_blocker_complex<SkeletonBlockerDS>> STrie;
  typedef Trie<Simplex> STrie;

 public:
  /**
   * @brief Constructor with a list of simplices.
   * @details is_flag_complex indicates if the complex is a flag complex or not (to know if blockers have to be computed or not).
   */
  template<typename SimpleHandleOutputIterator>
  Skeleton_blocker_complex(SimpleHandleOutputIterator simplices_begin, SimpleHandleOutputIterator simplices_end,
                           bool is_flag_complex = false, Visitor* visitor_ = NULL)
      : num_vertices_(0),
      num_blockers_(0),
      visitor(visitor_) {
    add_vertices_and_edges(simplices_begin, simplices_end);

    if (!is_flag_complex)
      // need to compute blockers
      add_blockers(simplices_begin, simplices_end);
  }

 private:
  /**
   * Add vertices and edges of a simplex in one pass
   */
  template<typename SimpleHandleOutputIterator>
  void add_vertices_and_edges(SimpleHandleOutputIterator simplices_begin, SimpleHandleOutputIterator simplices_end) {
    std::vector<std::pair<Vertex_handle, Vertex_handle>> edges;
    // first pass to add vertices and edges
    int num_vertex = -1;
    for (auto s_it = simplices_begin; s_it != simplices_end; ++s_it) {
      if (s_it->dimension() == 0) num_vertex = (std::max)(num_vertex, s_it->first_vertex().vertex);
      if (s_it->dimension() == 1) edges.emplace_back(s_it->first_vertex(), s_it->last_vertex());
    }
    while (num_vertex-- >= 0) add_vertex();

    for (const auto& e : edges)
      add_edge_without_blockers(e.first, e.second);
  }

  template<typename SimpleHandleOutputIterator>
  void add_blockers(SimpleHandleOutputIterator simplices_begin, SimpleHandleOutputIterator simplices_end) {
    Tries<Simplex> tries(num_vertices(), simplices_begin, simplices_end);
    tries.init_next_dimension();
    auto simplices(tries.next_dimension_simplices());

    while (!simplices.empty()) {
      simplices = tries.next_dimension_simplices();
      for (auto& sigma : simplices) {
        // common_positive_neighbors is the set of vertices u such that
        // for all s in sigma, us is an edge and u>s
        Simplex common_positive_neighbors(tries.positive_neighbors(sigma.last_vertex()));
        for (auto sigma_it = sigma.rbegin(); sigma_it != sigma.rend(); ++sigma_it)
          if (sigma_it != sigma.rbegin())
            common_positive_neighbors.intersection(tries.positive_neighbors(*sigma_it));

        for (auto x : common_positive_neighbors) {
          // first test that all edges sx are here for all s in sigma
          bool all_edges_here = true;
          for (auto s : sigma)
            if (!contains_edge(x, s)) {
              all_edges_here = false;
              break;
            }
          if (!all_edges_here) continue;

          // all edges of sigma \cup x are here
          // we have a blocker if all proper faces of sigma \cup x
          // are in the complex and if sigma \cup x is not in the complex
          // the first is equivalent at checking if blocks(sigma \cup x) is true
          // as all blockers of lower dimension have already been computed
          sigma.add_vertex(x);
          if (!tries.contains(sigma) && !blocks(sigma))
            add_blocker(sigma);
          sigma.remove_vertex(x);
        }
      }
    }
  }

 public:
  // We cannot use the default copy constructor since we need
  // to make a copy of each of the blockers

  Skeleton_blocker_complex(const Skeleton_blocker_complex& copy) {
    visitor = NULL;
    degree_ = copy.degree_;
    skeleton = Graph(copy.skeleton);
    num_vertices_ = copy.num_vertices_;

    num_blockers_ = 0;
    // we copy the blockers
    for (auto blocker : copy.const_blocker_range()) {
      add_blocker(*blocker);
    }
  }

  /**
   */
  Skeleton_blocker_complex& operator=(const Skeleton_blocker_complex& copy) {
    clear();
    visitor = NULL;
    degree_ = copy.degree_;
    skeleton = Graph(copy.skeleton);
    num_vertices_ = copy.num_vertices_;

    num_blockers_ = 0;
    // we copy the blockers
    for (auto blocker : copy.const_blocker_range())
      add_blocker(*blocker);
    return *this;
  }

  /**
   * return true if both complexes have the same simplices.
   */
  bool operator==(const Skeleton_blocker_complex& other) const {
    if (other.num_vertices() != num_vertices()) return false;
    if (other.num_edges() != num_edges()) return false;
    if (other.num_blockers() != num_blockers()) return false;

    for (auto v : vertex_range())
      if (!other.contains_vertex(v)) return false;

    for (auto e : edge_range())
      if (!other.contains_edge(first_vertex(e), second_vertex(e))) return false;

    for (const auto b : const_blocker_range())
      if (!other.contains_blocker(*b)) return false;

    return true;
  }

  bool operator!=(const Skeleton_blocker_complex& other) const {
    return !(*this == other);
  }

  /**
   * The destructor delete all blockers allocated.
   */
  virtual ~Skeleton_blocker_complex() {
    clear();
  }

  /**
   * @details Clears the simplicial complex. After a call to this function,
   * blockers are destroyed. The 1-skeleton and the set of blockers
   * are both empty.
   */
  virtual void clear() {
    // xxx for now the responsabilty of freeing the visitor is for
    // the user
    visitor = NULL;

    degree_.clear();
    num_vertices_ = 0;

    remove_blockers();

    skeleton.clear();
  }

  /**
   *@brief allows to change the visitor.
   */
  void set_visitor(Visitor* other_visitor) {
    visitor = other_visitor;
  }

  //@}

  /////////////////////////////////////////////////////////////////////////////
  /** @name Vertices operations
   */
  //@{
 public:
  /**
   * @brief Return a local Vertex_handle of a vertex given a global one.
   * @remark Assume that the vertex is present in the complex.
   */
  Vertex_handle operator[](Root_vertex_handle global) const {
    auto local(get_address(global));
    assert(local);
    return *local;
  }

  /**
   * @brief Return the vertex node associated to local Vertex_handle.
   * @remark Assume that the vertex is present in the complex.
   */
  Graph_vertex& operator[](Vertex_handle address) {
    assert(
           0 <= address.vertex && address.vertex < boost::num_vertices(skeleton));
    return skeleton[address.vertex];
  }

  /**
   * @brief Return the vertex node associated to local Vertex_handle.
   * @remark Assume that the vertex is present in the complex.
   */
  const Graph_vertex& operator[](Vertex_handle address) const {
    assert(
           0 <= address.vertex && address.vertex < boost::num_vertices(skeleton));
    return skeleton[address.vertex];
  }

  /**
   * @brief Adds a vertex to the simplicial complex and returns its Vertex_handle.
   * @remark Vertex representation is contiguous.
   */
  Vertex_handle add_vertex() {
    Vertex_handle address(boost::add_vertex(skeleton));
    num_vertices_++;
    (*this)[address].activate();
    // safe since we now that we are in the root complex and the field 'address' and 'id'
    // are identical for every vertices
    (*this)[address].set_id(Root_vertex_handle(address.vertex));
    degree_.push_back(0);
    if (visitor)
      visitor->on_add_vertex(address);
    return address;
  }

  /**
   * @brief Remove a vertex from the simplicial complex
   * @remark It just deactivates the vertex with a boolean flag but does not
   * remove it from vertices from complexity issues.
   */
  void remove_vertex(Vertex_handle address) {
    assert(contains_vertex(address));
    // We remove b
    boost::clear_vertex(address.vertex, skeleton);
    (*this)[address].deactivate();
    num_vertices_--;
    degree_[address.vertex] = -1;
    if (visitor)
      visitor->on_remove_vertex(address);
  }

  /**
   */
  bool contains_vertex(Vertex_handle u) const {
    Vertex_handle num_vertices(boost::num_vertices(skeleton));
    if (u.vertex < 0 || u.vertex >= num_vertices)
      return false;
    return (*this)[u].is_active();
  }

  /**
   */
  bool contains_vertex(Root_vertex_handle u) const {
    boost::optional<Vertex_handle> address = get_address(u);
    return address && (*this)[*address].is_active();
  }

  /**
   * @return true iff the simplicial complex contains all vertices
   * of simplex sigma
   */
  bool contains_vertices(const Simplex & sigma) const {
    for (auto vertex : sigma)
      if (!contains_vertex(vertex))
        return false;
    return true;
  }

  /**
   * @brief Given an Id return the address of the vertex having this Id in the complex.
   * @remark For a simplicial complex, the address is the id but it may not be the case for a SubComplex.
   */
  virtual boost::optional<Vertex_handle> get_address(Root_vertex_handle id) const {
    boost::optional<Vertex_handle> res;
    int num_vertices = boost::num_vertices(skeleton);
    if (id.vertex < num_vertices)
      res = Vertex_handle(id.vertex);
    return res;
  }

  /**
   * return the id of a vertex of adress local present in the graph
   */
  Root_vertex_handle get_id(Vertex_handle local) const {
    assert(0 <= local.vertex && local.vertex < boost::num_vertices(skeleton));
    return (*this)[local].get_id();
  }

  /**
   * @brief Convert an address of a vertex of a complex to the address in
   * the current complex.
   * @details
   * If the current complex is a sub (or sup) complex of 'other', it converts
   * the address of a vertex v expressed in 'other' to the address of the vertex
   * v in the current one.
   * @remark this methods uses Root_vertex_handle to identify the vertex and
   * assumes the vertex is present in the current complex.
   */
  Vertex_handle convert_handle_from_another_complex(const Skeleton_blocker_complex& other,
                                                    Vertex_handle vh_in_other) const {
    auto vh_in_current_complex = get_address(other.get_id(vh_in_other));
    assert(vh_in_current_complex);
    return *vh_in_current_complex;
  }

  /**
   * @brief return the graph degree of a vertex.
   */
  int degree(Vertex_handle local) const {
    assert(0 <= local.vertex && local.vertex < boost::num_vertices(skeleton));
    return degree_[local.vertex];
  }

  //@}

  /////////////////////////////////////////////////////////////////////////////
  /** @name Edges operations
   */
  //@{
 public:
  /**
   * @brief return an edge handle if the two vertices forms
   * an edge in the complex
   */
  boost::optional<Edge_handle> operator[](
                                          const std::pair<Vertex_handle, Vertex_handle>& ab) const {
    boost::optional<Edge_handle> res;
    std::pair<Edge_handle, bool> edge_pair(
                                           boost::edge(ab.first.vertex, ab.second.vertex, skeleton));
    if (edge_pair.second)
      res = edge_pair.first;
    return res;
  }

  /**
   * @brief returns the stored node associated to an edge
   */
  Graph_edge& operator[](Edge_handle edge_handle) {
    return skeleton[edge_handle];
  }

  /**
   * @brief returns the stored node associated to an edge
   */
  const Graph_edge& operator[](Edge_handle edge_handle) const {
    return skeleton[edge_handle];
  }

  /**
   * @brief returns the first vertex of an edge
   * @details it assumes that the edge is present in the complex
   */
  Vertex_handle first_vertex(Edge_handle edge_handle) const {
    return static_cast<Vertex_handle> (source(edge_handle, skeleton));
  }

  /**
   * @brief returns the first vertex of an edge
   * @details it assumes that the edge is present in the complex
   */
  Vertex_handle second_vertex(Edge_handle edge_handle) const {
    return static_cast<Vertex_handle> (target(edge_handle, skeleton));
  }

  /**
   * @brief returns the simplex made with the two vertices of the edge
   * @details it assumes that the edge is present in the complex

   */
  Simplex get_vertices(Edge_handle edge_handle) const {
    auto edge((*this)[edge_handle]);
    return Simplex((*this)[edge.first()], (*this)[edge.second()]);
  }

  /**
   * @brief Adds an edge between vertices a and b.
   * @details For instance, the complex contains edge 01 and 12, then calling
   * add_edge with vertex 0 and 2 will create a complex containing
   * the edges 01, 12, 20 but not the triangle 012 (and hence this complex
   * will contains a blocker 012).
   */
  Edge_handle add_edge(Vertex_handle a, Vertex_handle b) {
    // if the edge is already there we musnt go further
    // as we may add blockers that should not be here
    if (contains_edge(a, b))
      return *((*this)[std::make_pair(a, b)]);
    auto res = add_edge_without_blockers(a, b);
    add_blockers_after_simplex_insertion(Simplex(a, b));
    return res;
  }

  /**
   * @brief Adds all edges of s in the complex.
   */
  void add_edge(const Simplex& s) {
    for (auto i = s.begin(); i != s.end(); ++i)
      for (auto j = i; ++j != s.end(); /**/)
        add_edge(*i, *j);
  }

  /**
   * @brief Adds an edge between vertices a and b without blockers.
   * @details For instance, the complex contains edge 01 and 12, then calling
   * add_edge with vertex 0 and 2 will create a complex containing
   * the triangle 012.
   */
  Edge_handle add_edge_without_blockers(Vertex_handle a, Vertex_handle b) {
    assert(contains_vertex(a) && contains_vertex(b));
    assert(a != b);

    auto edge_handle((*this)[std::make_pair(a, b)]);
    if (!edge_handle) {
      edge_handle = boost::add_edge(a.vertex, b.vertex, skeleton).first;
      (*this)[*edge_handle].setId(get_id(a), get_id(b));
      degree_[a.vertex]++;
      degree_[b.vertex]++;
      if (visitor)
        visitor->on_add_edge_without_blockers(a, b);
    }
    return *edge_handle;
  }

  /**
   * @brief Adds all edges of s in the complex without adding blockers.
   */
  void add_edge_without_blockers(Simplex s) {
    for (auto i = s.begin(); i != s.end(); ++i) {
      for (auto j = i; ++j != s.end(); /**/)
        add_edge_without_blockers(*i, *j);
    }
  }

  /**
   * @brief Removes an edge from the simplicial complex and all its cofaces.
   * @details returns the former Edge_handle representing the edge
   */
  virtual Edge_handle remove_edge(Vertex_handle a, Vertex_handle b) {
    bool found;
    Edge_handle edge;
    tie(edge, found) = boost::edge(a.vertex, b.vertex, skeleton);
    if (found) {
      if (visitor)
        visitor->on_remove_edge(a, b);
      boost::remove_edge(a.vertex, b.vertex, skeleton);
      degree_[a.vertex]--;
      degree_[b.vertex]--;
    }
    return edge;
  }

  /**
   * @brief Removes edge and its cofaces from the simplicial complex.
   */
  void remove_edge(Edge_handle edge) {
    assert(contains_vertex(first_vertex(edge)));
    assert(contains_vertex(second_vertex(edge)));
    remove_edge(first_vertex(edge), second_vertex(edge));
  }

  /**
   * @brief The complex is reduced to its set of vertices.
   * All the edges and blockers are removed.
   */
  void keep_only_vertices() {
    remove_blockers();

    for (auto u : vertex_range()) {
      while (this->degree(u) > 0) {
        Vertex_handle v(*(adjacent_vertices(u.vertex, this->skeleton).first));
        this->remove_edge(u, v);
      }
    }
  }

  /**
   * @return true iff the simplicial complex contains an edge between
   * vertices a and b
   */
  bool contains_edge(Vertex_handle a, Vertex_handle b) const {
    // if (a.vertex<0 || b.vertex <0) return false;
    return boost::edge(a.vertex, b.vertex, skeleton).second;
  }

  /**
   * @return true iff the simplicial complex contains all vertices
   * and all edges of simplex sigma
   */
  bool contains_edges(const Simplex & sigma) const {
    for (auto i = sigma.begin(); i != sigma.end(); ++i) {
      if (!contains_vertex(*i))
        return false;
      for (auto j = i; ++j != sigma.end();) {
        if (!contains_edge(*i, *j))
          return false;
      }
    }
    return true;
  }
  //@}

  /////////////////////////////////////////////////////////////////////////////
  /** @name Blockers operations
   */
  //@{

  /**
   * @brief Adds the simplex to the set of blockers and
   * returns a Blocker_handle toward it if was not present before and 0 otherwise.
   */
  Blocker_handle add_blocker(const Simplex& blocker) {
    assert(blocker.dimension() > 1);
    if (contains_blocker(blocker)) {
      return 0;
    } else {
      if (visitor)
        visitor->on_add_blocker(blocker);
      Blocker_handle blocker_pt = new Simplex(blocker);
      num_blockers_++;
      auto vertex = blocker_pt->begin();
      while (vertex != blocker_pt->end()) {
        blocker_map_.insert(BlockerPair(*vertex, blocker_pt));
        ++vertex;
      }
      return blocker_pt;
    }
  }

 protected:
  /**
   * @brief Adds the simplex to the set of blockers
   */
  void add_blocker(Blocker_handle blocker) {
    if (contains_blocker(*blocker)) {
      // std::cerr << "ATTEMPT TO ADD A BLOCKER ALREADY THERE ---> BLOCKER IGNORED" << endl;
      return;
    } else {
      if (visitor)
        visitor->on_add_blocker(*blocker);
      num_blockers_++;
      auto vertex = blocker->begin();
      while (vertex != blocker->end()) {
        blocker_map_.insert(BlockerPair(*vertex, blocker));
        ++vertex;
      }
    }
  }

 protected:
  /**
   * Removes sigma from the blocker map of vertex v
   */
  void remove_blocker(const Blocker_handle sigma, Vertex_handle v) {
    Complex_blocker_around_vertex_iterator blocker;
    for (blocker = blocker_range(v).begin(); blocker != blocker_range(v).end();
         ++blocker) {
      if (*blocker == sigma)
        break;
    }
    if (*blocker != sigma) {
      std::cerr
          << "bug ((*blocker).second == sigma) ie try to remove a blocker not present\n";
      assert(false);
    } else {
      blocker_map_.erase(blocker.current_position());
    }
  }

 public:
  /**
   * @brief Removes the simplex from the set of blockers.
   * @remark sigma has to belongs to the set of blockers
   */
  void remove_blocker(const Blocker_handle sigma) {
    for (auto vertex : *sigma)
      remove_blocker(sigma, vertex);
    num_blockers_--;
  }

  /**
   * @brief Remove all blockers, in other words, it expand the simplicial
   * complex to the smallest flag complex that contains it.
   */
  void remove_blockers() {
    // Desallocate the blockers
    while (!blocker_map_.empty()) {
      delete_blocker(blocker_map_.begin()->second);
    }
    num_blockers_ = 0;
    blocker_map_.clear();
  }

 protected:
  /**
   * Removes the simplex sigma from the set of blockers.
   * sigma has to belongs to the set of blockers
   *
   * @remark contrarily to delete_blockers does not call the destructor
   */
  void remove_blocker(const Simplex& sigma) {
    assert(contains_blocker(sigma));
    for (auto vertex : sigma)
      remove_blocker(sigma, vertex);
    num_blockers_--;
  }

 public:
  /**
   * Removes the simplex s from the set of blockers
   * and desallocate s.
   */
  void delete_blocker(Blocker_handle sigma) {
    if (visitor)
      visitor->on_delete_blocker(sigma);
    remove_blocker(sigma);
    delete sigma;
  }

  /**
   * @return true iff s is a blocker of the simplicial complex
   */
  bool contains_blocker(const Blocker_handle s) const {
    if (s->dimension() < 2)
      return false;

    Vertex_handle a = s->first_vertex();

    for (const auto blocker : const_blocker_range(a)) {
      if (s == *blocker)
        return true;
    }
    return false;
  }

  /**
   * @return true iff s is a blocker of the simplicial complex
   */
  bool contains_blocker(const Simplex & s) const {
    if (s.dimension() < 2)
      return false;

    Vertex_handle a = s.first_vertex();

    for (auto blocker : const_blocker_range(a)) {
      if (s == *blocker)
        return true;
    }
    return false;
  }

 private:
  /**
   * @return true iff a blocker of the simplicial complex
   * is a face of sigma.
   */
  bool blocks(const Simplex & sigma) const {
    for (auto s : sigma)
      for (auto blocker : const_blocker_range(s))
        if (sigma.contains(*blocker))
          return true;
    return false;
  }

  //@}

 protected:
  /**
   * @details Adds to simplex the neighbours of v e.g. \f$ n \leftarrow n \cup N(v) \f$.
   * If keep_only_superior is true then only vertices that are greater than v are added.
   */
  virtual void add_neighbours(Vertex_handle v, Simplex & n,
                              bool keep_only_superior = false) const {
    boost_adjacency_iterator ai, ai_end;
    for (tie(ai, ai_end) = adjacent_vertices(v.vertex, skeleton); ai != ai_end;
         ++ai) {
      Vertex_handle value(*ai);
      if (keep_only_superior) {
        if (value > v.vertex) {
          n.add_vertex(value);
        }
      } else {
        n.add_vertex(value);
      }
    }
  }

  /**
   * @details Add to simplex res all vertices which are
   * neighbours of alpha: ie \f$ res \leftarrow res \cup N(alpha) \f$.
   *
   * If 'keep_only_superior' is true then only vertices that are greater than alpha are added.
   * todo revoir
   *
   */
  virtual void add_neighbours(const Simplex &alpha, Simplex & res,
                              bool keep_only_superior = false) const {
    res.clear();
    auto alpha_vertex = alpha.begin();
    add_neighbours(*alpha_vertex, res, keep_only_superior);
    for (alpha_vertex = (alpha.begin())++; alpha_vertex != alpha.end();
         ++alpha_vertex)
      keep_neighbours(*alpha_vertex, res, keep_only_superior);
  }

  /**
   * @details Remove from simplex n all vertices which are
   * not neighbours of v e.g. \f$ res \leftarrow res \cap N(v) \f$.
   * If 'keep_only_superior' is true then only vertices that are greater than v are keeped.
   */
  virtual void keep_neighbours(Vertex_handle v, Simplex& res,
                               bool keep_only_superior = false) const {
    Simplex nv;
    add_neighbours(v, nv, keep_only_superior);
    res.intersection(nv);
  }

  /**
   * @details Remove from simplex all vertices which are
   * neighbours of v eg \f$ res \leftarrow res \setminus N(v) \f$.
   * If 'keep_only_superior' is true then only vertices that are greater than v are added.
   */
  virtual void remove_neighbours(Vertex_handle v, Simplex & res,
                                 bool keep_only_superior = false) const {
    Simplex nv;
    add_neighbours(v, nv, keep_only_superior);
    res.difference(nv);
  }

 public:
  typedef Skeleton_blocker_link_complex<Skeleton_blocker_complex> Link_complex;

  /**
   * Constructs the link of 'simplex' with points coordinates.
   */
  Link_complex link(Vertex_handle v) const {
    return Link_complex(*this, Simplex(v));
  }

  /**
   * Constructs the link of 'simplex' with points coordinates.
   */
  Link_complex link(Edge_handle edge) const {
    return Link_complex(*this, edge);
  }

  /**
   * Constructs the link of 'simplex' with points coordinates.
   */
  Link_complex link(const Simplex& simplex) const {
    return Link_complex(*this, simplex);
  }

  /**
   * @brief Compute the local vertices of 's' in the current complex
   * If one of them is not present in the complex then the return value is uninitialized.
   *
   *
   */
  // xxx rename get_address et place un using dans sub_complex

  boost::optional<Simplex> get_simplex_address(
                                               const Root_simplex_handle& s) const {
    boost::optional<Simplex> res;

    Simplex s_address;
    // Root_simplex_const_iterator i;
    for (auto i = s.begin(); i != s.end(); ++i) {
      boost::optional<Vertex_handle> address = get_address(*i);
      if (!address)
        return res;
      else
        s_address.add_vertex(*address);
    }
    res = s_address;
    return res;
  }

  /**
   * @brief returns a simplex with vertices which are the id of vertices of the
   * argument.
   */
  Root_simplex_handle get_id(const Simplex& local_simplex) const {
    Root_simplex_handle global_simplex;
    for (auto x = local_simplex.begin(); x != local_simplex.end(); ++x) {
      global_simplex.add_vertex(get_id(*x));
    }
    return global_simplex;
  }

  /**
   * @brief returns true iff the simplex s belongs to the simplicial
   * complex.
   */
  virtual bool contains(const Simplex & s) const {
    if (s.dimension() == -1) {
      return false;
    } else if (s.dimension() == 0) {
      return contains_vertex(s.first_vertex());
    } else {
      return (contains_edges(s) && !blocks(s));
    }
  }

  /*
   * @brief returnrs true iff the complex is empty.
   */
  bool empty() const {
    return num_vertices() == 0;
  }

  /*
   * @brief returns the number of vertices in the complex.
   */
  int num_vertices() const {
    // remark boost::num_vertices(skeleton) counts deactivated vertices
    return num_vertices_;
  }

  /*
   * @brief returns the number of edges in the complex.
   * @details currently in O(n)
   */
  // todo cache the value

  int num_edges() const {
    return boost::num_edges(skeleton);
  }

  int num_triangles() const {
    auto triangles = triangle_range();
    return std::distance(triangles.begin(), triangles.end());
  }

  /*
   * @brief returns the number of simplices of a given dimension in the complex.
   */
  size_t num_simplices() const {
    auto simplices = complex_simplex_range();
    return std::distance(simplices.begin(), simplices.end());
  }

  /*
   * @brief returns the number of simplices of a given dimension in the complex.
   */
  size_t num_simplices(int dimension) const {
    // TODO(DS): iterator on k-simplices
    size_t res = 0;
    for (const auto& s : complex_simplex_range())
      if (s.dimension() == dimension)
        ++res;
    return res;
  }

  /*
   * @brief returns the number of blockers in the complex.
   */
  size_t num_blockers() const {
    return num_blockers_;
  }

  /*
   * @brief returns true iff the graph of the 1-skeleton of the complex is complete.
   */
  bool complete() const {
    return (num_vertices() * (num_vertices() - 1)) / 2 == num_edges();
  }

  /**
   * @brief returns the number of connected components in the graph of the 1-skeleton.
   */
  int num_connected_components() const {
    int num_vert_collapsed = skeleton.vertex_set().size() - num_vertices();
    std::vector<int> component(skeleton.vertex_set().size());
    return boost::connected_components(this->skeleton, &component[0])
        - num_vert_collapsed;
  }

  /**
   * @brief %Test if the complex is a cone.
   * @details Runs in O(n) where n is the number of vertices.
   */
  bool is_cone() const {
    if (num_vertices() == 0)
      return false;
    if (num_vertices() == 1)
      return true;
    for (auto vi : vertex_range()) {
      // xxx todo faire une methode bool is_in_blocker(Vertex_handle)
      if (blocker_map_.find(vi) == blocker_map_.end()) {
        // no blocker passes through the vertex, we just need to
        // check if the current vertex is linked to all others vertices of the complex
        if (degree_[vi.vertex] == num_vertices() - 1)
          return true;
      }
    }
    return false;
  }

  //@}
  /** @name Simplification operations
   */
  //@{

  /**
   * Returns true iff the blocker 'sigma' is popable.
   * To define popable, let us call 'L' the complex that
   * consists in the current complex without the blocker 'sigma'.
   * A blocker 'sigma' is then "popable" if the link of 'sigma'
   * in L is reducible.
   *
   */
  bool is_popable_blocker(Blocker_handle sigma) const;

  /**
   * Removes all the popable blockers of the complex and delete them.
   * @returns the number of popable blockers deleted
   */
  void remove_popable_blockers();

  /**
   * Removes all the popable blockers of the complex passing through v and delete them.
   */
  void remove_popable_blockers(Vertex_handle v);

  /**
   * @brief Removes all the popable blockers of the complex passing through v and delete them.
   * Also remove popable blockers in the neighborhood if they became popable.
   *
   */
  void remove_all_popable_blockers(Vertex_handle v);

  /**
   * Remove the star of the vertex 'v'
   */
  void remove_star(Vertex_handle v);

 private:
  /**
   * after removing the star of a simplex, blockers sigma that contains this simplex must be removed.
   * Furthermore, all simplices tau of the form sigma \setminus simplex_to_be_removed must be added
   * whenever the dimension of tau is at least 2.
   */
  void update_blockers_after_remove_star_of_vertex_or_edge(const Simplex& simplex_to_be_removed);

 public:
  /**
   * Remove the star of the edge connecting vertices a and b.
   * @returns the number of blocker that have been removed
   */
  void remove_star(Vertex_handle a, Vertex_handle b);

  /**
   * Remove the star of the edge 'e'.
   */
  void remove_star(Edge_handle e);

  /**
   * Remove the star of the simplex 'sigma' which needs to belong to the complex
   */
  void remove_star(const Simplex& sigma);

  /**
   * @brief add a simplex and all its faces.
   * @details the simplex must have dimension greater than one (otherwise use add_vertex or add_edge_without_blockers).   
   */
  void add_simplex(const Simplex& sigma);

 private:
  void add_blockers_after_simplex_insertion(Simplex s);

  /**
   * remove all blockers that contains sigma
   */
  void remove_blocker_containing_simplex(const Simplex& sigma);

  /**
   * remove all blockers that contains sigma
   */
  void remove_blocker_include_in_simplex(const Simplex& sigma);

 public:
  enum simplifiable_status {
    NOT_HOMOTOPY_EQ, MAYBE_HOMOTOPY_EQ, HOMOTOPY_EQ
  };

  simplifiable_status is_remove_star_homotopy_preserving(const Simplex& simplex) {
    // todo write a virtual method 'link' in Skeleton_blocker_complex which will be overloaded by the current one of
    // Skeleton_blocker_geometric_complex
    // then call it there to build the link and return the value of link.is_contractible()
    return MAYBE_HOMOTOPY_EQ;
  }

  enum contractible_status {
    NOT_CONTRACTIBLE, MAYBE_CONTRACTIBLE, CONTRACTIBLE
  };

  /**
   * @brief %Test if the complex is reducible using a strategy defined in the class
   * (by default it tests if the complex is a cone)
   * @details Note that NO could be returned if some invariant ensures that the complex
   * is not a point (for instance if the euler characteristic is different from 1).
   * This function will surely have to return MAYBE in some case because the
   * associated problem is undecidable but it in practice, it can often
   * be solved with the help of geometry.
   */
  virtual contractible_status is_contractible() const {
    if (this->is_cone()) {
      return CONTRACTIBLE;
    } else {
      return MAYBE_CONTRACTIBLE;
    }
  }
  //@}

  /** @name Edge contraction operations
   */
  //@{

  /**
   * @return If ignore_popable_blockers is true
   * then the result is true iff the link condition at edge ab is satisfied
   * or equivalently iff no blocker contains ab.
   * If ignore_popable_blockers is false then the
   * result is true iff all blocker containing ab are popable.
   */
  bool link_condition(Vertex_handle a, Vertex_handle b, bool ignore_popable_blockers = false) const {
    for (auto blocker : this->const_blocker_range(a))
      if (blocker->contains(b)) {
        // false if ignore_popable_blockers is false
        // otherwise the blocker has to be popable
        return ignore_popable_blockers && is_popable_blocker(blocker);
      }
    return true;
  }

  /**
   * @return If ignore_popable_blockers is true
   * then the result is true iff the link condition at edge ab is satisfied
   * or equivalently iff no blocker contains ab.
   * If ignore_popable_blockers is false then the
   * result is true iff all blocker containing ab are popable.
   */
  bool link_condition(Edge_handle e, bool ignore_popable_blockers = false) const {
    const Graph_edge& edge = (*this)[e];
    assert(this->get_address(edge.first()));
    assert(this->get_address(edge.second()));
    Vertex_handle a(*this->get_address(edge.first()));
    Vertex_handle b(*this->get_address(edge.second()));
    return link_condition(a, b, ignore_popable_blockers);
  }

 protected:
  /**
   * Compute simplices beta such that a.beta is an order 0 blocker
   * that may be used to construct a new blocker after contracting ab.
   * It requires that the link condition is satisfied.
   */
  void tip_blockers(Vertex_handle a, Vertex_handle b, std::vector<Simplex> & buffer) const;

 private:
  /**
   * @brief "Replace" the edge 'bx' by the edge 'ax'.
   * Assume that the edge 'bx' was present whereas 'ax' was not.
   * Precisely, it does not replace edges, but remove 'bx' and then add 'ax'.
   * The visitor 'on_swaped_edge' is called just after edge 'ax' had been added
   * and just before edge 'bx' had been removed. That way, it can
   * eventually access to information of 'ax'.
   */
  void swap_edge(Vertex_handle a, Vertex_handle b, Vertex_handle x);

 private:
  /**
   * @brief removes all blockers passing through the edge 'ab'
   */
  void delete_blockers_around_vertex(Vertex_handle v);

  /**
   * @brief removes all blockers passing through the edge 'ab'
   */
  void delete_blockers_around_edge(Vertex_handle a, Vertex_handle b);

 public:
  /**
   * Contracts the edge.
   * @remark If the link condition Link(ab) = Link(a) inter Link(b) is not satisfied,
   * it removes first all blockers passing through 'ab'
   */
  void contract_edge(Edge_handle edge) {
    contract_edge(this->first_vertex(edge), this->second_vertex(edge));
  }

  /**
   * Contracts the edge connecting vertices a and b.
   * @remark If the link condition Link(ab) = Link(a) inter Link(b) is not satisfied,
   * it removes first all blockers passing through 'ab'
   */
  void contract_edge(Vertex_handle a, Vertex_handle b);

 private:
  void get_blockers_to_be_added_after_contraction(Vertex_handle a, Vertex_handle b,
                                                  std::set<Simplex>& blockers_to_add);
  /**
   * delete all blockers that passes through a or b
   */
  void delete_blockers_around_vertices(Vertex_handle a, Vertex_handle b);
  void update_edges_after_contraction(Vertex_handle a, Vertex_handle b);
  void notify_changed_edges(Vertex_handle a);
  //@}

 public:
  /////////////////////////////////////////////////////////////////////////////
  /** @name Vertex iterators
   */
  //@{
  typedef Vertex_iterator<Skeleton_blocker_complex> Complex_vertex_iterator;

  //
  // Range over the vertices of the simplicial complex.
  // Methods .begin() and .end() return a Complex_vertex_iterator.
  //
  typedef boost::iterator_range<Complex_vertex_iterator> Complex_vertex_range;

  /**
   * @brief Returns a Complex_vertex_range over all vertices of the complex
   */
  Complex_vertex_range vertex_range() const {
    auto begin = Complex_vertex_iterator(this);
    auto end = Complex_vertex_iterator(this, 0);
    return Complex_vertex_range(begin, end);
  }

  typedef Neighbors_vertices_iterator<Skeleton_blocker_complex> Complex_neighbors_vertices_iterator;


  typedef boost::iterator_range<Complex_neighbors_vertices_iterator> Complex_neighbors_vertices_range;

  /**
   * @brief Returns a Complex_edge_range over all edges of the simplicial complex that passes trough v
   */
  Complex_neighbors_vertices_range vertex_range(Vertex_handle v) const {
    auto begin = Complex_neighbors_vertices_iterator(this, v);
    auto end = Complex_neighbors_vertices_iterator(this, v, 0);
    return Complex_neighbors_vertices_range(begin, end);
  }

  //@}

  /** @name Edge iterators
   */
  //@{

  typedef Edge_iterator<Skeleton_blocker_complex> Complex_edge_iterator;


  typedef boost::iterator_range<Complex_edge_iterator> Complex_edge_range;

  /**
   * @brief Returns a Complex_edge_range over all edges of the simplicial complex
   */
  Complex_edge_range edge_range() const {
    auto begin = Complex_edge_iterator(this);
    auto end = Complex_edge_iterator(this, 0);
    return Complex_edge_range(begin, end);
  }


  typedef Edge_around_vertex_iterator<Skeleton_blocker_complex> Complex_edge_around_vertex_iterator;


  typedef boost::iterator_range <Complex_edge_around_vertex_iterator> Complex_edge_around_vertex_range;

  /**
   * @brief Returns a Complex_edge_range over all edges of the simplicial complex that passes
   * through 'v'
   */
  Complex_edge_around_vertex_range edge_range(Vertex_handle v) const {
    auto begin = Complex_edge_around_vertex_iterator(this, v);
    auto end = Complex_edge_around_vertex_iterator(this, v, 0);
    return Complex_edge_around_vertex_range(begin, end);
  }

  //@}

  /** @name Triangles iterators
   */
  //@{
 private:
  typedef Skeleton_blocker_link_complex<Skeleton_blocker_complex<SkeletonBlockerDS> > Link;
  typedef Skeleton_blocker_link_superior<Skeleton_blocker_complex<SkeletonBlockerDS> > Superior_link;

 public:
  typedef Triangle_around_vertex_iterator<Skeleton_blocker_complex, Superior_link>
  Superior_triangle_around_vertex_iterator;
  typedef boost::iterator_range < Triangle_around_vertex_iterator<Skeleton_blocker_complex, Link> >
  Complex_triangle_around_vertex_range;

  /**
   * @brief Range over triangles around a vertex of the simplicial complex.
   * Methods .begin() and .end() return a Triangle_around_vertex_iterator.
   *
   */
  Complex_triangle_around_vertex_range triangle_range(Vertex_handle v) const {
    auto begin = Triangle_around_vertex_iterator<Skeleton_blocker_complex, Link>(this, v);
    auto end = Triangle_around_vertex_iterator<Skeleton_blocker_complex, Link>(this, v, 0);
    return Complex_triangle_around_vertex_range(begin, end);
  }

  typedef boost::iterator_range<Triangle_iterator<Skeleton_blocker_complex> > Complex_triangle_range;
  typedef Triangle_iterator<Skeleton_blocker_complex> Complex_triangle_iterator;

  /**
   * @brief Range over triangles of the simplicial complex.
   * Methods .begin() and .end() return a Triangle_around_vertex_iterator.
   *
   */
  Complex_triangle_range triangle_range() const {
    auto end = Triangle_iterator<Skeleton_blocker_complex>(this, 0);
    if (empty()) {
      return Complex_triangle_range(end, end);
    } else {
      auto begin = Triangle_iterator<Skeleton_blocker_complex>(this);
      return Complex_triangle_range(begin, end);
    }
  }

  //@}

  /** @name Simplices iterators
   */
  //@{
  typedef Simplex_around_vertex_iterator<Skeleton_blocker_complex, Link> Complex_simplex_around_vertex_iterator;

  /**
   * @brief Range over the simplices of the simplicial complex around a vertex.
   * Methods .begin() and .end() return a Complex_simplex_around_vertex_iterator.
   */
  typedef boost::iterator_range < Complex_simplex_around_vertex_iterator > Complex_simplex_around_vertex_range;

  /**
   * @brief Returns a Complex_simplex_around_vertex_range over all the simplices around a vertex of the complex
   */
  Complex_simplex_around_vertex_range star_simplex_range(Vertex_handle v) const {
    assert(contains_vertex(v));
    return Complex_simplex_around_vertex_range(
                                               Complex_simplex_around_vertex_iterator(this, v),
                                               Complex_simplex_around_vertex_iterator(this, v, true));
  }
  typedef Simplex_coboundary_iterator<Skeleton_blocker_complex, Link> Complex_simplex_coboundary_iterator;

  /**
   * @brief Range over the simplices of the coboundary of a simplex.
   * Methods .begin() and .end() return a Complex_simplex_coboundary_iterator.
   */
  typedef boost::iterator_range < Complex_simplex_coboundary_iterator > Complex_coboundary_range;

  /**
   * @brief Returns a Complex_simplex_coboundary_iterator over the simplices of the coboundary of a simplex.
   */
  Complex_coboundary_range coboundary_range(const Simplex& s) const {
    assert(contains(s));
    return Complex_coboundary_range(Complex_simplex_coboundary_iterator(this, s),
                                    Complex_simplex_coboundary_iterator(this, s, true));
  }

  // typedef Simplex_iterator<Skeleton_blocker_complex,Superior_link> Complex_simplex_iterator;
  typedef Simplex_iterator<Skeleton_blocker_complex> Complex_simplex_iterator;

  typedef boost::iterator_range < Complex_simplex_iterator > Complex_simplex_range;

  /**
   * @brief Returns a Complex_simplex_range over all the simplices of the complex
   */
  Complex_simplex_range complex_simplex_range() const {
    Complex_simplex_iterator end(this, true);
    if (empty()) {
      return Complex_simplex_range(end, end);
    } else {
      Complex_simplex_iterator begin(this);
      return Complex_simplex_range(begin, end);
    }
  }

  //@}

  /** @name Blockers iterators
   */
  //@{
 private:
  /**
   * @brief Iterator over the blockers adjacent to a vertex
   */
  typedef Blocker_iterator_around_vertex_internal<
  typename std::multimap<Vertex_handle, Simplex *>::iterator,
  Blocker_handle>
  Complex_blocker_around_vertex_iterator;

  /**
   * @brief Iterator over (constant) blockers adjacent to a vertex
   */
  typedef Blocker_iterator_around_vertex_internal<
  typename std::multimap<Vertex_handle, Simplex *>::const_iterator,
  const Blocker_handle>
  Const_complex_blocker_around_vertex_iterator;

  typedef boost::iterator_range <Complex_blocker_around_vertex_iterator> Complex_blocker_around_vertex_range;
  typedef boost::iterator_range <Const_complex_blocker_around_vertex_iterator>
  Const_complex_blocker_around_vertex_range;

 public:
  /**
   * @brief Returns a range of the blockers of the complex passing through a vertex
   */
  Complex_blocker_around_vertex_range blocker_range(Vertex_handle v) {
    auto begin = Complex_blocker_around_vertex_iterator(blocker_map_.lower_bound(v));
    auto end = Complex_blocker_around_vertex_iterator(blocker_map_.upper_bound(v));
    return Complex_blocker_around_vertex_range(begin, end);
  }

  /**
   * @brief Returns a range of the blockers of the complex passing through a vertex
   */
  Const_complex_blocker_around_vertex_range const_blocker_range(Vertex_handle v) const {
    auto begin = Const_complex_blocker_around_vertex_iterator(blocker_map_.lower_bound(v));
    auto end = Const_complex_blocker_around_vertex_iterator(blocker_map_.upper_bound(v));
    return Const_complex_blocker_around_vertex_range(begin, end);
  }

 private:
  /**
   * @brief Iterator over the blockers.
   */
  typedef Blocker_iterator_internal<
  typename std::multimap<Vertex_handle, Simplex *>::iterator,
  Blocker_handle>
  Complex_blocker_iterator;

  /**
   * @brief Iterator over the (constant) blockers.
   */
  typedef Blocker_iterator_internal<
  typename std::multimap<Vertex_handle, Simplex *>::const_iterator,
  const Blocker_handle>
  Const_complex_blocker_iterator;

  typedef boost::iterator_range <Complex_blocker_iterator> Complex_blocker_range;
  typedef boost::iterator_range <Const_complex_blocker_iterator> Const_complex_blocker_range;

 public:
  /**
   * @brief Returns a range of the blockers of the complex
   */
  Complex_blocker_range blocker_range() {
    auto begin = Complex_blocker_iterator(blocker_map_.begin(), blocker_map_.end());
    auto end = Complex_blocker_iterator(blocker_map_.end(), blocker_map_.end());
    return Complex_blocker_range(begin, end);
  }

  /**
   * @brief Returns a range of the blockers of the complex
   */
  Const_complex_blocker_range const_blocker_range() const {
    auto begin = Const_complex_blocker_iterator(blocker_map_.begin(), blocker_map_.end());
    auto end = Const_complex_blocker_iterator(blocker_map_.end(), blocker_map_.end());
    return Const_complex_blocker_range(begin, end);
  }

  //@}

  /////////////////////////////////////////////////////////////////////////////
  /** @name Print and IO methods
   */
  //@{
 public:
  std::string to_string() const {
    std::ostringstream stream;
    stream << num_vertices() << " vertices:\n" << vertices_to_string() << std::endl;
    stream << num_edges() << " edges:\n" << edges_to_string() << std::endl;
    stream << num_blockers() << " blockers:\n" << blockers_to_string() << std::endl;
    return stream.str();
  }

  std::string vertices_to_string() const {
    std::ostringstream stream;
    for (auto vertex : vertex_range()) {
      stream << "{" << (*this)[vertex].get_id() << "} ";
    }
    stream << std::endl;
    return stream.str();
  }

  std::string edges_to_string() const {
    std::ostringstream stream;
    for (auto edge : edge_range())
      stream << "{" << (*this)[edge].first() << "," << (*this)[edge].second() << "} ";
    stream << std::endl;
    return stream.str();
  }

  std::string blockers_to_string() const {
    std::ostringstream stream;

    for (auto b : const_blocker_range())
      stream << *b << std::endl;
    return stream.str();
  }
  //@}
};

/**
 * build a simplicial complex from a collection
 * of top faces.
 * return the total number of simplices
 */
template<typename Complex, typename SimplexHandleIterator>
Complex make_complex_from_top_faces(SimplexHandleIterator simplices_begin, SimplexHandleIterator simplices_end,
                                    bool is_flag_complex = false) {
  // TODO(DS): use add_simplex instead! should be more efficient and more elegant :)
  typedef typename Complex::Simplex Simplex;
  std::vector<Simplex> simplices;
  for (auto top_face = simplices_begin; top_face != simplices_end; ++top_face) {
    auto subfaces_topface = subfaces(*top_face);
    simplices.insert(simplices.end(), subfaces_topface.begin(), subfaces_topface.end());
  }
  return Complex(simplices.begin(), simplices.end(), is_flag_complex);
}

}  // namespace skeleton_blocker

namespace skbl = skeleton_blocker;

}  // namespace Gudhi

#include "Skeleton_blocker_simplifiable_complex.h"

#endif  // SKELETON_BLOCKER_COMPLEX_H_