summaryrefslogtreecommitdiff
path: root/src/cython/include/Alpha_complex_interface.h
blob: e2e6d10030d184ad64113741d9bad52776372096 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Vincent Rouvreau
 *
 *    Copyright (C) 2016 INRIA
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef ALPHA_COMPLEX_INTERFACE_H
#define	ALPHA_COMPLEX_INTERFACE_H

#include <gudhi/Alpha_complex.h>
#include <CGAL/Epick_d.h>

#include <vector>
#include <utility>  // std::pair
#include <iostream>

namespace Gudhi {

namespace alpha_complex {

class Alpha_complex_interface : public Alpha_complex< CGAL::Epick_d< CGAL::Dynamic_dimension_tag > > {
  using Alpha_complex = Alpha_complex< CGAL::Epick_d< CGAL::Dynamic_dimension_tag > > ;
  typedef typename Alpha_complex::Simplex_handle Simplex_handle;
  typedef typename std::pair<Simplex_handle, bool> Insertion_result;
  using Simplex = std::vector<Vertex_handle>;
  using Filtered_complex = std::pair<Simplex, Filtration_value>;
  using Complex_tree = std::vector<Filtered_complex>;
  using Point_d = Alpha_complex::Point_d;

 public:

  Alpha_complex_interface(std::vector<std::vector<double>>&points, double max_alpha_square)
  : Alpha_complex(points, max_alpha_square) {
  }

  // bool from_file is a workaround fro cython to find the correct signature
  Alpha_complex_interface(const std::string& off_file, double max_alpha_square, bool from_file)
  : Alpha_complex(off_file, max_alpha_square) {
  }

  bool find_simplex(const Simplex& vh) {
    return (Alpha_complex::find(vh) != Alpha_complex::null_simplex());
  }

  bool insert_simplex_and_subfaces(const Simplex& complex, Filtration_value filtration = 0) {
    Insertion_result result = Alpha_complex::insert_simplex_and_subfaces(complex, filtration);
    return (result.second);
  }

  Filtration_value simplex_filtration(const Simplex& complex) {
    return Alpha_complex::filtration(Alpha_complex::find(complex));
  }

  void remove_maximal_simplex(const Simplex& complex) {
    return Alpha_complex::remove_maximal_simplex(Alpha_complex::find(complex));
  }

  Complex_tree get_filtered_tree() {
    Complex_tree filtered_tree;
    for (auto f_simplex : Alpha_complex::filtration_simplex_range()) {
      Simplex simplex;
      for (auto vertex : Alpha_complex::simplex_vertex_range(f_simplex)) {
        simplex.insert(simplex.begin(), vertex);
      }
      filtered_tree.push_back(std::make_pair(simplex, Alpha_complex::filtration(f_simplex)));
    }
    return filtered_tree;

  }

  Complex_tree get_skeleton_tree(int dimension) {
    Complex_tree skeleton_tree;
    for (auto f_simplex : Alpha_complex::skeleton_simplex_range(dimension)) {
      Simplex simplex;
      for (auto vertex : Alpha_complex::simplex_vertex_range(f_simplex)) {
        simplex.insert(simplex.begin(), vertex);
      }
      skeleton_tree.push_back(std::make_pair(simplex, Alpha_complex::filtration(f_simplex)));
    }
    return skeleton_tree;
  }

  Complex_tree get_star_tree(const Simplex& complex) {
    Complex_tree star_tree;
    for (auto f_simplex : Alpha_complex::star_simplex_range(Alpha_complex::find(complex))) {
      Simplex simplex;
      for (auto vertex : Alpha_complex::simplex_vertex_range(f_simplex)) {
        simplex.insert(simplex.begin(), vertex);
      }
      star_tree.push_back(std::make_pair(simplex, Alpha_complex::filtration(f_simplex)));
    }
    return star_tree;
  }

  Complex_tree get_coface_tree(const Simplex& complex, int dimension) {
    Complex_tree coface_tree;
    for (auto f_simplex : Alpha_complex::cofaces_simplex_range(Alpha_complex::find(complex), dimension)) {
      Simplex simplex;
      for (auto vertex : Alpha_complex::simplex_vertex_range(f_simplex)) {
        simplex.insert(simplex.begin(), vertex);
      }
      coface_tree.push_back(std::make_pair(simplex, Alpha_complex::filtration(f_simplex)));
    }
    return coface_tree;
  }
  
  std::vector<double> get_point(int vh) {
    std::vector<double> vd;
    try {
      Point_d ph = Alpha_complex::get_point(vh);
      for (auto coord = ph.cartesian_begin(); coord < ph.cartesian_end(); coord++)
        vd.push_back(*coord);
    } catch (std::out_of_range outofrange) {
      // std::out_of_range is thrown in case not found. Other exceptions must be re-thrown
    }
    return vd;
  }

};

}  // namespace alpha_complex

} // namespace Gudhi

#endif  // ALPHA_COMPLEX_INTERFACE_H