summaryrefslogtreecommitdiff
path: root/src/python/doc/alpha_complex_user.rst
blob: de706de9f1a7ea354c43fec909a9918c20f2b55c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
:orphan:

.. To get rid of WARNING: document isn't included in any toctree

Alpha complex user manual
=========================
Definition
----------

.. include:: alpha_complex_sum.inc

`AlphaComplex` is constructing a :doc:`SimplexTree <simplex_tree_ref>` using
`Delaunay Triangulation  <http://doc.cgal.org/latest/Triangulation/index.html#Chapter_Triangulations>`_
:cite:`cgal:hdj-t-19b` from `CGAL <http://www.cgal.org/>`_ (the Computational Geometry Algorithms Library
:cite:`cgal:eb-19b`).

Remarks
^^^^^^^
When an :math:`\alpha`-complex is constructed with an infinite value of :math:`\alpha^2`,
the complex is a Delaunay complex (with special filtration values).

Example from points
-------------------

This example builds the alpha-complex from the given points:

.. testcode::

    import gudhi
    alpha_complex = gudhi.AlphaComplex(points=[[1, 1], [7, 0], [4, 6], [9, 6], [0, 14], [2, 19], [9, 17]])

    simplex_tree = alpha_complex.create_simplex_tree()
    result_str = 'Alpha complex is of dimension ' + repr(simplex_tree.dimension()) + ' - ' + \
        repr(simplex_tree.num_simplices()) + ' simplices - ' + \
        repr(simplex_tree.num_vertices()) + ' vertices.'
    print(result_str)
    fmt = '%s -> %.2f'
    for filtered_value in simplex_tree.get_filtration():
        print(fmt % tuple(filtered_value))

The output is:

.. testoutput::

   Alpha complex is of dimension 2 - 25 simplices - 7 vertices.
   [0] -> 0.00
   [1] -> 0.00
   [2] -> 0.00
   [3] -> 0.00
   [4] -> 0.00
   [5] -> 0.00
   [6] -> 0.00
   [2, 3] -> 6.25
   [4, 5] -> 7.25
   [0, 2] -> 8.50
   [0, 1] -> 9.25
   [1, 3] -> 10.00
   [1, 2] -> 11.25
   [1, 2, 3] -> 12.50
   [0, 1, 2] -> 13.00
   [5, 6] -> 13.25
   [2, 4] -> 20.00
   [4, 6] -> 22.74
   [4, 5, 6] -> 22.74
   [3, 6] -> 30.25
   [2, 6] -> 36.50
   [2, 3, 6] -> 36.50
   [2, 4, 6] -> 37.24
   [0, 4] -> 59.71
   [0, 2, 4] -> 59.71


Algorithm
---------

Data structure
^^^^^^^^^^^^^^

In order to build the alpha complex, first, a Simplex tree is built from the cells of a Delaunay Triangulation.
(The filtration value is set to NaN, which stands for unknown value):

.. figure::
    ../../doc/Alpha_complex/alpha_complex_doc.png
    :figclass: align-center
    :alt: Simplex tree structure construction example

    Simplex tree structure construction example

Filtration value computation algorithm
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: vim

    for i : dimension → 0 do
      for all σ of dimension i
        if filtration(σ) is NaN then
          filtration(σ) = α²(σ)
        end if
        for all τ face of σ do // propagate alpha filtration value
          if filtration(τ) is not NaN then
            filtration(τ) = min( filtration(τ), filtration(σ) )
          else
            if τ is not Gabriel for σ then
              filtration(τ) = filtration(σ)
            end if
          end if
        end for
      end for
    end for
    
    make_filtration_non_decreasing()
    prune_above_filtration()


Dimension 2
^^^^^^^^^^^

From the example above, it means the algorithm looks into each triangle ([0,1,2], [0,2,4], [1,2,3], ...),
computes the filtration value of the triangle, and then propagates the filtration value as described
here:

.. figure::
    ../../doc/Alpha_complex/alpha_complex_doc_420.png
    :figclass: align-center
    :alt: Filtration value propagation example

    Filtration value propagation example

Dimension 1
^^^^^^^^^^^

Then, the algorithm looks into each edge ([0,1], [0,2], [1,2], ...),
computes the filtration value of the edge (in this case, propagation will have no effect).

Dimension 0
^^^^^^^^^^^

Finally, the algorithm looks into each vertex ([0], [1], [2], [3], [4], [5] and [6]) and
sets the filtration value (0 in case of a vertex - propagation will have no effect).

Non decreasing filtration values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

As the squared radii computed by CGAL are an approximation, it might happen that these
:math:`\alpha^2` values do not quite define a proper filtration (i.e. non-decreasing with
respect to inclusion).
We fix that up by calling :func:`~gudhi.SimplexTree.make_filtration_non_decreasing` (cf.
`C++ version <http://gudhi.gforge.inria.fr/doc/latest/index.html>`_).

Prune above given filtration value
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The simplex tree is pruned from the given maximum :math:`\alpha^2` value (cf.
:func:`~gudhi.SimplexTree.prune_above_filtration`). Note that this does not provide any kind
of speed-up, since we always first build the full filtered complex, so it is recommended not to use
:paramref:`~gudhi.AlphaComplex.create_simplex_tree.max_alpha_square`.
In the following example, a threshold of :math:`\alpha^2 = 32.0` is used.


Example from OFF file
^^^^^^^^^^^^^^^^^^^^^

This example builds the Delaunay triangulation from the points given by an OFF file, and initializes the alpha complex
with it.


Then, it is asked to display information about the alpha complex:

.. testcode::

    import gudhi
    alpha_complex = gudhi.AlphaComplex(off_file=gudhi.__root_source_dir__ + \
        '/data/points/alphacomplexdoc.off')
    simplex_tree = alpha_complex.create_simplex_tree(max_alpha_square=32.0)
    result_str = 'Alpha complex is of dimension ' + repr(simplex_tree.dimension()) + ' - ' + \
        repr(simplex_tree.num_simplices()) + ' simplices - ' + \
        repr(simplex_tree.num_vertices()) + ' vertices.'
    print(result_str)
    fmt = '%s -> %.2f'
    for filtered_value in simplex_tree.get_filtration():
        print(fmt % tuple(filtered_value))

the program output is:

.. testoutput::

   Alpha complex is of dimension 2 - 20 simplices - 7 vertices.
   [0] -> 0.00
   [1] -> 0.00
   [2] -> 0.00
   [3] -> 0.00
   [4] -> 0.00
   [5] -> 0.00
   [6] -> 0.00
   [2, 3] -> 6.25
   [4, 5] -> 7.25
   [0, 2] -> 8.50
   [0, 1] -> 9.25
   [1, 3] -> 10.00
   [1, 2] -> 11.25
   [1, 2, 3] -> 12.50
   [0, 1, 2] -> 13.00
   [5, 6] -> 13.25
   [2, 4] -> 20.00
   [4, 6] -> 22.74
   [4, 5, 6] -> 22.74
   [3, 6] -> 30.25