summaryrefslogtreecommitdiff
path: root/src/python/gudhi/wasserstein.py
blob: 3dd993f9b1114b4a5ffdae570f5a3cb32e05c18e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
# See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
# Author(s):       Theo Lacombe
#
# Copyright (C) 2019 Inria
#
# Modification(s):
#   - YYYY/MM Author: Description of the modification

import numpy as np
import scipy.spatial.distance as sc
try:
    import ot
except ImportError:
    print("POT (Python Optimal Transport) package is not installed. Try to run $ conda install -c conda-forge pot ; or $ pip install POT")

def _proj_on_diag(X):
    '''
    :param X: (n x 2) array encoding the points of a persistent diagram.
    :returns: (n x 2) array encoding the (respective orthogonal) projections of the points onto the diagonal
    '''
    Z = (X[:,0] + X[:,1]) / 2.
    return np.array([Z , Z]).T


def _build_dist_matrix(X, Y, order=2., internal_p=2.):
    '''
    :param X: (n x 2) numpy.array encoding the (points of the) first diagram.
    :param Y: (m x 2) numpy.array encoding the second diagram.
    :param order: exponent for the Wasserstein metric.
    :param internal_p: Ground metric (i.e. norm L^p).
    :returns: (n+1) x (m+1) np.array encoding the cost matrix C. 
                For 0 <= i < n, 0 <= j < m, C[i,j] encodes the distance between X[i] and Y[j], 
                while C[i, m] (resp. C[n, j]) encodes the distance (to the p) between X[i] (resp Y[j]) 
                and its orthogonal projection onto the diagonal.
                note also that C[n, m] = 0  (it costs nothing to move from the diagonal to the diagonal).
    '''
    Xdiag = _proj_on_diag(X)
    Ydiag = _proj_on_diag(Y)
    if np.isinf(internal_p):
        C = sc.cdist(X,Y, metric='chebyshev')**order
        Cxd = np.linalg.norm(X - Xdiag, ord=internal_p, axis=1)**order
        Cdy = np.linalg.norm(Y - Ydiag, ord=internal_p, axis=1)**order
    else:
        C = sc.cdist(X,Y, metric='minkowski', p=internal_p)**order
        Cxd = np.linalg.norm(X - Xdiag, ord=internal_p, axis=1)**order
        Cdy = np.linalg.norm(Y - Ydiag, ord=internal_p, axis=1)**order
    Cf = np.hstack((C, Cxd[:,None]))
    Cdy = np.append(Cdy, 0)

    Cf = np.vstack((Cf, Cdy[None,:]))

    return Cf


def _perstot(X, order, internal_p):
    '''
    :param X: (n x 2) numpy.array (points of a given diagram).
    :param order: exponent for Wasserstein. Default value is 2.
    :param internal_p: Ground metric on the (upper-half) plane (i.e. norm L^p in R^2); Default value is 2 (Euclidean norm).
    :returns: float, the total persistence of the diagram (that is, its distance to the empty diagram).    
    '''
    Xdiag = _proj_on_diag(X)
    return (np.sum(np.linalg.norm(X - Xdiag, ord=internal_p, axis=1)**order))**(1./order)


def wasserstein_distance(X, Y, matching=False, order=2., internal_p=2.):
    '''
    :param X: (n x 2) numpy.array encoding the (finite points of the) first diagram. Must not contain essential points 
                (i.e. with infinite coordinate).
    :param Y: (m x 2) numpy.array encoding the second diagram.
    :param matching: if True, computes and returns the optimal matching between X and Y, encoded as
                     a (n x 2) np.array  [...[i,j]...], meaning the i-th point in X is matched to
                     the j-th point in Y, with the convention (-1) represents the diagonal.
    :param order: exponent for Wasserstein; Default value is 2.
    :param internal_p: Ground metric on the (upper-half) plane (i.e. norm L^p in R^2); 
                       Default value is 2 (Euclidean norm).
    :returns: the Wasserstein distance of order q (1 <= q < infinity) between persistence diagrams with 
              respect to the internal_p-norm as ground metric.
              If matching is set to True, also returns the optimal matching between X and Y.
    '''
    n = len(X)
    m = len(Y)

    # handle empty diagrams
    if X.size == 0:
        if Y.size == 0:
            if not matching:
                return 0.
            else:
                return 0., np.array([])
        else:
            if not matching:
                return _perstot(Y, order, internal_p)
            else:
                return _perstot(Y, order, internal_p), np.array([[-1, j] for j in range(m)])
    elif Y.size == 0:
        if not matching:
            return _perstot(X, order, internal_p)
        else:
            return _perstot(X, order, internal_p), np.array([[i, -1] for i in range(n)])

    M = _build_dist_matrix(X, Y, order=order, internal_p=internal_p)
    a = np.ones(n+1) # weight vector of the input diagram. Uniform here.
    a[-1] = m
    b = np.ones(m+1) # weight vector of the input diagram. Uniform here.
    b[-1] = n

    if matching:
        P = ot.emd(a=a,b=b,M=M, numItermax=2000000)
        ot_cost = np.sum(np.multiply(P,M))
        P[-1, -1] = 0  # Remove matching corresponding to the diagonal
        match = np.argwhere(P)
        # Now we turn to -1 points encoding the diagonal
        match[:,0][match[:,0] >= n] = -1
        match[:,1][match[:,1] >= m] = -1
        return ot_cost ** (1./order) , match

    # Comptuation of the otcost using the ot.emd2 library.
    # Note: it is the Wasserstein distance to the power q.
    # The default numItermax=100000 is not sufficient for some examples with 5000 points, what is a good value?
    ot_cost = ot.emd2(a, b, M, numItermax=2000000)

    return ot_cost ** (1./order)