summaryrefslogtreecommitdiff
path: root/src/python/gudhi/wasserstein/wasserstein.py
blob: dc18806e021d53d2549385b8a1ad103bbae47365 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
# See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
# Author(s):       Theo Lacombe
#
# Copyright (C) 2019 Inria
#
# Modification(s):
#   - YYYY/MM Author: Description of the modification

import numpy as np
import scipy.spatial.distance as sc
import warnings

try:
    import ot
except ImportError:
    print("POT (Python Optimal Transport) package is not installed. Try to run $ conda install -c conda-forge pot ; or $ pip install POT")


# Currently unused, but Théo says it is likely to be used again.
def _proj_on_diag(X):
    '''
    :param X: (n x 2) array encoding the points of a persistent diagram.
    :returns: (n x 2) array encoding the (respective orthogonal) projections of the points onto the diagonal
    '''
    Z = (X[:,0] + X[:,1]) / 2.
    return np.array([Z , Z]).T


def _dist_to_diag(X, internal_p):
    '''
    :param X: (n x 2) array encoding the points of a persistent diagram.
    :param internal_p: Ground metric (i.e. norm L^p).
    :returns: (n) array encoding the (respective orthogonal) distances of the points to the diagonal

    .. note::
        Assumes that the points are above the diagonal.
    '''
    return (X[:, 1] - X[:, 0]) * 2 ** (1.0 / internal_p - 1)


def _build_dist_matrix(X, Y, order, internal_p):
    '''
    :param X: (n x 2) numpy.array encoding the (points of the) first diagram.
    :param Y: (m x 2) numpy.array encoding the second diagram.
    :param order: exponent for the Wasserstein metric.
    :param internal_p: Ground metric (i.e. norm L^p).
    :returns: (n+1) x (m+1) np.array encoding the cost matrix C.
                For 0 <= i < n, 0 <= j < m, C[i,j] encodes the distance between X[i] and Y[j],
                while C[i, m] (resp. C[n, j]) encodes the distance (to the p) between X[i] (resp Y[j])
                and its orthogonal projection onto the diagonal.
                note also that C[n, m] = 0  (it costs nothing to move from the diagonal to the diagonal).
    '''
    Cxd = _dist_to_diag(X, internal_p)**order
    Cdy = _dist_to_diag(Y, internal_p)**order
    if np.isinf(internal_p):
        C = sc.cdist(X,Y, metric='chebyshev')**order
    else:
        C = sc.cdist(X,Y, metric='minkowski', p=internal_p)**order
    Cf = np.hstack((C, Cxd[:,None]))
    Cdy = np.append(Cdy, 0)

    Cf = np.vstack((Cf, Cdy[None,:]))

    return Cf


def _perstot_autodiff(X, order, internal_p):
    '''
    Version of _perstot that works on eagerpy tensors.
    '''
    return _dist_to_diag(X, internal_p).norms.lp(order)


def _perstot(X, order, internal_p, enable_autodiff):
    '''
    :param X: (n x 2) numpy.array (points of a given diagram).
    :param order: exponent for Wasserstein.
    :param internal_p: Ground metric on the (upper-half) plane (i.e. norm L^p in R^2).
    :param enable_autodiff: If X is torch.tensor, tensorflow.Tensor or jax.numpy.ndarray, make the computation
        transparent to automatic differentiation.
    :type enable_autodiff: bool
    :returns: float, the total persistence of the diagram (that is, its distance to the empty diagram).

    .. note::
        Can be +inf if the diagram has an essential part (points with infinite coordinates).
    '''
    if enable_autodiff:
        import eagerpy as ep

        return _perstot_autodiff(ep.astensor(X), order, internal_p).raw
    else:
        return np.linalg.norm(_dist_to_diag(X, internal_p), ord=order)


def _get_essential_parts(a):
    '''
    :param a: (n x 2) numpy.array (point of a diagram)
    :returns: five lists of indices (between 0 and len(a)) accounting for the five types of points with infinite
    coordinates that can occur in a diagram, namely:
        type0 : (-inf, finite)
        type1 : (finite, +inf)
        type2 : (-inf, +inf)
        type3 : (-inf, -inf)
        type4 : (+inf, +inf)
    .. note::
        For instance, a[_get_essential_parts(a)[0]] returns the points in a of coordinates (-inf, x) for some finite x.
        Note also that points with (+inf, -inf) are not handled (points (x,y) in dgm satisfy by assumption (y >= x)).

        Finally, we consider that points with coordinates (-inf,-inf) and (+inf, +inf) belong to the diagonal.
    '''
    if len(a):
        first_coord_finite = np.isfinite(a[:,0])
        second_coord_finite = np.isfinite(a[:,1])
        first_coord_infinite_positive = (a[:,0] == np.inf)
        second_coord_infinite_positive = (a[:,1] == np.inf)
        first_coord_infinite_negative = (a[:,0] == -np.inf)
        second_coord_infinite_negative = (a[:,1] == -np.inf)

        ess_first_type  = np.where(second_coord_finite & first_coord_infinite_negative)[0] # coord (-inf, x)
        ess_second_type = np.where(first_coord_finite & second_coord_infinite_positive)[0]  # coord (x, +inf)
        ess_third_type  = np.where(first_coord_infinite_negative & second_coord_infinite_positive)[0]  # coord (-inf, +inf)

        ess_fourth_type = np.where(first_coord_infinite_negative & second_coord_infinite_negative)[0] # coord (-inf, -inf)
        ess_fifth_type  = np.where(first_coord_infinite_positive  & second_coord_infinite_positive)[0]  # coord (+inf, +inf)
        return ess_first_type, ess_second_type, ess_third_type, ess_fourth_type, ess_fifth_type
    else:
        return [], [], [], [], []


def _cost_and_match_essential_parts(X, Y, idX, idY, order, axis):
    '''
    :param X: (n x 2) numpy.array (dgm points)
    :param Y: (n x 2) numpy.array (dgm points)
    :param idX: indices to consider for this one dimensional OT problem (in X)
    :param idY: indices to consider for this one dimensional OT problem (in Y)
    :param order: exponent for Wasserstein distance computation
    :param axis: must be 0 or 1, correspond to the coordinate which is finite.
    :returns: cost (float) and match for points with *one* infinite coordinate.

    .. note::
        Assume idX, idY come when calling _handle_essential_parts, thus have same length.
    '''
    u = X[idX, axis]
    v = Y[idY, axis]

    cost = np.sum(np.abs(np.sort(u) - np.sort(v))**(order))  # OT cost in 1D

    sortidX = idX[np.argsort(u)]
    sortidY = idY[np.argsort(v)]
    # We return [i,j] sorted per value
    match = list(zip(sortidX, sortidY))

    return cost, match


def _handle_essential_parts(X, Y, order):
    '''
    :param X: (n x 2) numpy array, first diagram.
    :param Y: (n x 2) numpy array, second diagram.
    :order: Wasserstein order for cost computation.
    :returns: cost and matching due to essential parts. If cost is +inf, matching will be set to None.
    '''
    ess_parts_X = _get_essential_parts(X)
    ess_parts_Y = _get_essential_parts(Y)

    # Treats the case of infinite cost (cardinalities of essential parts differ).
    for u, v in list(zip(ess_parts_X, ess_parts_Y))[:3]: # ignore types 4 and 5 as they belong to the diagonal
        if len(u) != len(v):
            return np.inf, None

    # Now we know each essential part has the same number of points in both diagrams.
    # Handle type 0 and type 1 essential parts (those with one finite coordinates)
    c1, m1 = _cost_and_match_essential_parts(X, Y, ess_parts_X[0], ess_parts_Y[0], axis=1, order=order)
    c2, m2 = _cost_and_match_essential_parts(X, Y, ess_parts_X[1], ess_parts_Y[1], axis=0, order=order)

    c = c1 + c2
    m = m1 + m2

    # Handle type3 (coordinates (-inf,+inf), so we just align points)
    m += list(zip(ess_parts_X[2], ess_parts_Y[2]))

    # Handle type 4 and 5, considered as belonging to the diagonal so matched to (-1) with cost 0.
    for z in ess_parts_X[3:]:
        m += [(u, -1) for u in z] # points in X are matched to -1
    for z in ess_parts_Y[3:]:
        m += [(-1, v) for v in z] # -1 is match to points in Y

    return c, np.array(m)


def _finite_part(X):
    '''
    :param X: (n x 2) numpy array encoding a persistence diagram.
    :returns: The finite part of a diagram `X` (points with finite coordinates).
    '''
    return X[np.where(np.isfinite(X[:,0]) & np.isfinite(X[:,1]))]


def _warn_infty(matching):
    '''
    Handle essential parts with different cardinalities. Warn the user about cost being infinite and (if
    `matching=True`) about the returned matching being `None`.
    '''
    if matching:
        warnings.warn('Cardinality of essential parts differs. Distance (cost) is +inf, and the returned matching is None.')
        return np.inf, None
    else:
        warnings.warn('Cardinality of essential parts differs. Distance (cost) is +inf.')
        return np.inf


def wasserstein_distance(X, Y, matching=False, order=1., internal_p=np.inf, enable_autodiff=False,
                         keep_essential_parts=True):
    '''
    Compute the Wasserstein distance between persistence diagram using Python Optimal Transport backend.
    Diagrams can contain points with infinity coordinates (essential parts).
    Points with (-inf,-inf) and (+inf,+inf) coordinates are considered as belonging to the diagonal.
    If the distance between two diagrams is +inf (which happens if the cardinalities of essential
    parts differ) and optimal matching is required, it will be set to ``None``.

    :param X: The first diagram.
    :type X: n x 2 numpy.array
    :param Y:  The second diagram.
    :type Y: m x 2 numpy.array
    :param matching: if ``True``, computes and returns the optimal matching between X and Y, encoded as
        a (n x 2) np.array  [...[i,j]...], meaning the i-th point in X is matched to
        the j-th point in Y, with the convention that (-1) represents the diagonal.
    :param order: Wasserstein exponent q (1 <= q < infinity).
    :type order: float
    :param internal_p: Ground metric on the (upper-half) plane (i.e. norm L^p in R^2).
    :type internal_p: float
    :param enable_autodiff: If X and Y are ``torch.tensor`` or ``tensorflow.Tensor``, make the computation
        transparent to automatic differentiation. This requires the package EagerPy and is currently incompatible
        with ``matching=True`` and with ``keep_essential_parts=True``.

        .. note:: This considers the function defined on the coordinates of the off-diagonal finite points of X and Y
            and lets the various frameworks compute its gradient. It never pulls new points from the diagonal.
    :type enable_autodiff: bool
    :param keep_essential_parts: If ``False``, only considers the finite points in the diagrams.
                                 Otherwise, include essential parts in cost and matching computation.
    :type keep_essential_parts: bool
    :returns: The Wasserstein distance of order q (1 <= q < infinity) between persistence diagrams with
              respect to the internal_p-norm as ground metric.
              If matching is set to True, also returns the optimal matching between X and Y.
              If cost is +inf, any matching is optimal and thus it returns `None` instead.
    '''

    # First step: handle empty diagrams
    n = len(X)
    m = len(Y)

    if n == 0:
        if m == 0:
            if not matching:
                # What if enable_autodiff?
                return 0.
            else:
                return 0., np.array([])
        else:
            cost = _perstot(Y, order, internal_p, enable_autodiff)
            if cost == np.inf:
                return _warn_infty(matching)
            else:
                if not matching:
                    return cost
                else:
                    return cost, np.array([[-1, j] for j in range(m)])
    elif m == 0:
        cost = _perstot(X, order, internal_p, enable_autodiff)
        if cost == np.inf:
            return _warn_infty(matching)
        else:
            if not matching:
                return cost
            else:
                return cost, np.array([[i, -1] for i in range(n)])


    # Check essential part and enable autodiff together
    if enable_autodiff and keep_essential_parts:
        warnings.warn('''enable_autodiff=True and keep_essential_parts=True are incompatible together.
                      keep_essential_parts is set to False: only points with finite coordinates are considered
                      in the following.
                      ''')
        keep_essential_parts = False

    # Second step: handle essential parts if needed.
    if keep_essential_parts:
        essential_cost, essential_matching = _handle_essential_parts(X, Y, order=order)
        if (essential_cost == np.inf):
            return _warn_infty(matching)  # Tells the user that cost is infty and matching (if True) is None.
            # avoid computing transport cost between the finite parts if essential parts
            # cardinalities do not match (saves time)
    else:
        essential_cost = 0
        essential_matching = None

    # Now the standard pipeline for finite parts
    if enable_autodiff:
        import eagerpy as ep

        X_orig = ep.astensor(X)
        Y_orig = ep.astensor(Y)
        X = X_orig.numpy()
        Y = Y_orig.numpy()

    # Extract finite points of the diagrams. 
    X, Y = _finite_part(X), _finite_part(Y)
    n = len(X)
    m = len(Y)

    M = _build_dist_matrix(X, Y, order=order, internal_p=internal_p)
    a = np.ones(n+1) # weight vector of the input diagram. Uniform here.
    a[-1] = m
    b = np.ones(m+1) # weight vector of the input diagram. Uniform here.
    b[-1] = n

    if matching:
        assert not enable_autodiff, "matching and enable_autodiff are currently incompatible"
        P = ot.emd(a=a,b=b,M=M, numItermax=2000000)
        ot_cost = np.sum(np.multiply(P,M))
        P[-1, -1] = 0  # Remove matching corresponding to the diagonal
        match = np.argwhere(P)
        # Now we turn to -1 points encoding the diagonal
        match[:,0][match[:,0] >= n] = -1
        match[:,1][match[:,1] >= m] = -1
        # Finally incorporate the essential part matching
        if essential_matching is not None:
            match = np.concatenate([match, essential_matching]) if essential_matching.size else match
        return (ot_cost + essential_cost) ** (1./order) , match

    if enable_autodiff:
        P = ot.emd(a=a, b=b, M=M, numItermax=2000000)
        pairs_X_Y = np.argwhere(P[:-1, :-1])
        pairs_X_diag = np.nonzero(P[:-1, -1])
        pairs_Y_diag = np.nonzero(P[-1, :-1])
        dists = []
        # empty arrays are not handled properly by the helpers, so we avoid calling them
        if len(pairs_X_Y):
            dists.append((Y_orig[pairs_X_Y[:, 1]] - X_orig[pairs_X_Y[:, 0]]).norms.lp(internal_p, axis=-1).norms.lp(order))
        if len(pairs_X_diag[0]):
            dists.append(_perstot_autodiff(X_orig[pairs_X_diag], order, internal_p))
        if len(pairs_Y_diag[0]):
            dists.append(_perstot_autodiff(Y_orig[pairs_Y_diag], order, internal_p))
        dists = [dist.reshape(1) for dist in dists]
        return ep.concatenate(dists).norms.lp(order).raw
        # We can also concatenate the 3 vectors to compute just one norm.

    # Comptuation of the ot cost using the ot.emd2 library.
    # Note: it is the Wasserstein distance to the power q.
    # The default numItermax=100000 is not sufficient for some examples with 5000 points, what is a good value?
    ot_cost = ot.emd2(a, b, M, numItermax=2000000)

    return (ot_cost + essential_cost) ** (1./order)