summaryrefslogtreecommitdiff
path: root/src/python/test/test_alpha_complex.py
blob: 814f828928ca3f42044f6435d08facaabc1c1055 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
""" This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
    Author(s):       Vincent Rouvreau

    Copyright (C) 2016 Inria

    Modification(s):
      - YYYY/MM Author: Description of the modification
"""

import gudhi as gd
import math
import numpy as np
import pytest
try:
    # python3
    from itertools import zip_longest
except ImportError:
    # python2
    from itertools import izip_longest as zip_longest

__author__ = "Vincent Rouvreau"
__copyright__ = "Copyright (C) 2016 Inria"
__license__ = "MIT"


def _empty_alpha(precision):
    alpha_complex = gd.AlphaComplex(points=[[0, 0]], precision = precision)
    assert alpha_complex.__is_defined() == True

def test_empty_alpha():
    for precision in ['fast', 'safe', 'exact']:
        _empty_alpha(precision)

def _infinite_alpha(precision):
    point_list = [[0, 0], [1, 0], [0, 1], [1, 1]]
    alpha_complex = gd.AlphaComplex(points=point_list, precision = precision)
    assert alpha_complex.__is_defined() == True

    simplex_tree = alpha_complex.create_simplex_tree()
    assert simplex_tree.__is_persistence_defined() == False

    assert simplex_tree.num_simplices() == 11
    assert simplex_tree.num_vertices() == 4

    assert list(simplex_tree.get_filtration()) == [
        ([0], 0.0),
        ([1], 0.0),
        ([2], 0.0),
        ([3], 0.0),
        ([0, 1], 0.25),
        ([0, 2], 0.25),
        ([1, 3], 0.25),
        ([2, 3], 0.25),
        ([1, 2], 0.5),
        ([0, 1, 2], 0.5),
        ([1, 2, 3], 0.5),
    ]

    assert simplex_tree.get_star([0]) == [
        ([0], 0.0),
        ([0, 1], 0.25),
        ([0, 1, 2], 0.5),
        ([0, 2], 0.25),
    ]
    assert simplex_tree.get_cofaces([0], 1) == [([0, 1], 0.25), ([0, 2], 0.25)]

    assert point_list[0] == alpha_complex.get_point(0)
    assert point_list[1] == alpha_complex.get_point(1)
    assert point_list[2] == alpha_complex.get_point(2)
    assert point_list[3] == alpha_complex.get_point(3)
    try:
        alpha_complex.get_point(4) == []
    except IndexError:
        pass
    else:
        assert False
    try:
        alpha_complex.get_point(125) == []
    except IndexError:
        pass
    else:
        assert False

def test_infinite_alpha():
    for precision in ['fast', 'safe', 'exact']:
        _infinite_alpha(precision)

def _filtered_alpha(precision):
    point_list = [[0, 0], [1, 0], [0, 1], [1, 1]]
    filtered_alpha = gd.AlphaComplex(points=point_list, precision = precision)

    simplex_tree = filtered_alpha.create_simplex_tree(max_alpha_square=0.25)

    assert simplex_tree.num_simplices() == 8
    assert simplex_tree.num_vertices() == 4

    assert point_list[0] == filtered_alpha.get_point(0)
    assert point_list[1] == filtered_alpha.get_point(1)
    assert point_list[2] == filtered_alpha.get_point(2)
    assert point_list[3] == filtered_alpha.get_point(3)
    try:
        filtered_alpha.get_point(4) == []
    except IndexError:
        pass
    else:
        assert False
    try:
        filtered_alpha.get_point(125) == []
    except IndexError:
        pass
    else:
        assert False

    assert list(simplex_tree.get_filtration()) == [
        ([0], 0.0),
        ([1], 0.0),
        ([2], 0.0),
        ([3], 0.0),
        ([0, 1], 0.25),
        ([0, 2], 0.25),
        ([1, 3], 0.25),
        ([2, 3], 0.25),
    ]
    assert simplex_tree.get_star([0]) == [([0], 0.0), ([0, 1], 0.25), ([0, 2], 0.25)]
    assert simplex_tree.get_cofaces([0], 1) == [([0, 1], 0.25), ([0, 2], 0.25)]

def test_filtered_alpha():
    for precision in ['fast', 'safe', 'exact']:
        _filtered_alpha(precision)

def _safe_alpha_persistence_comparison(precision):
    #generate periodic signal
    time = np.arange(0, 10, 1)
    signal = [math.sin(x) for x in time]
    delta = math.pi
    delayed = [math.sin(x + delta) for x in time]
    
    #construct embedding
    embedding1 = [[signal[i], -signal[i]] for i in range(len(time))]
    embedding2 = [[signal[i], delayed[i]] for i in range(len(time))]
    
    #build alpha complex and simplex tree
    alpha_complex1 = gd.AlphaComplex(points=embedding1, precision = precision)
    simplex_tree1 = alpha_complex1.create_simplex_tree()
    
    alpha_complex2 = gd.AlphaComplex(points=embedding2, precision = precision)
    simplex_tree2 = alpha_complex2.create_simplex_tree()
    
    diag1 = simplex_tree1.persistence()
    diag2 = simplex_tree2.persistence()

    for (first_p, second_p) in zip_longest(diag1, diag2):
        assert first_p[0] == pytest.approx(second_p[0])
        assert first_p[1] == pytest.approx(second_p[1])


def test_safe_alpha_persistence_comparison():
    # Won't work for 'fast' version
    _safe_alpha_persistence_comparison('safe')
    _safe_alpha_persistence_comparison('exact')

def _delaunay_complex(precision):
    point_list = [[0, 0], [1, 0], [0, 1], [1, 1]]
    filtered_alpha = gd.AlphaComplex(points=point_list, precision = precision)

    simplex_tree = filtered_alpha.create_simplex_tree(default_filtration_value = True)

    assert simplex_tree.num_simplices() == 11
    assert simplex_tree.num_vertices() == 4

    assert point_list[0] == filtered_alpha.get_point(0)
    assert point_list[1] == filtered_alpha.get_point(1)
    assert point_list[2] == filtered_alpha.get_point(2)
    assert point_list[3] == filtered_alpha.get_point(3)
    try:
        filtered_alpha.get_point(4) == []
    except IndexError:
        pass
    else:
        assert False
    try:
        filtered_alpha.get_point(125) == []
    except IndexError:
        pass
    else:
        assert False

    for filtered_value in simplex_tree.get_filtration():
        assert math.isnan(filtered_value[1])
    for filtered_value in simplex_tree.get_star([0]):
        assert math.isnan(filtered_value[1])
    for filtered_value in simplex_tree.get_cofaces([0], 1):
        assert math.isnan(filtered_value[1])

def test_delaunay_complex():
    for precision in ['fast', 'safe', 'exact']:
        _delaunay_complex(precision)

def _3d_points_on_a_plane(precision, default_filtration_value):
    alpha = gd.AlphaComplex(off_file='alphacomplexdoc.off', precision = precision)

    simplex_tree = alpha.create_simplex_tree(default_filtration_value = default_filtration_value)
    assert simplex_tree.dimension() == 2
    assert simplex_tree.num_vertices() == 7
    assert simplex_tree.num_simplices() == 25

def test_3d_points_on_a_plane():
    off_file = open("alphacomplexdoc.off", "w")
    off_file.write("OFF         \n" \
                   "7 0 0       \n" \
                   "1.0 1.0  0.0\n" \
                   "7.0 0.0  0.0\n" \
                   "4.0 6.0  0.0\n" \
                   "9.0 6.0  0.0\n" \
                   "0.0 14.0 0.0\n" \
                   "2.0 19.0 0.0\n" \
                   "9.0 17.0 0.0\n"  )
    off_file.close()

    for default_filtration_value in [True, False]:
        for precision in ['fast', 'safe', 'exact']:
            _3d_points_on_a_plane(precision, default_filtration_value)

def _3d_tetrahedrons(precision):
    points = 10*np.random.rand(10, 3)
    alpha = gd.AlphaComplex(points=points, precision = precision)
    st_alpha = alpha.create_simplex_tree(default_filtration_value = False)
    # New AlphaComplex for get_point to work
    delaunay = gd.AlphaComplex(points=points, precision = precision)
    st_delaunay = delaunay.create_simplex_tree(default_filtration_value = True)

    delaunay_tetra = []
    for sk in st_delaunay.get_skeleton(4):
        if len(sk[0]) == 4:
            tetra = [delaunay.get_point(sk[0][0]),
                     delaunay.get_point(sk[0][1]),
                     delaunay.get_point(sk[0][2]),
                     delaunay.get_point(sk[0][3]) ]
            delaunay_tetra.append(sorted(tetra, key=lambda tup: tup[0]))

    alpha_tetra = []
    for sk in st_alpha.get_skeleton(4):
        if len(sk[0]) == 4:
            tetra = [alpha.get_point(sk[0][0]),
                     alpha.get_point(sk[0][1]),
                     alpha.get_point(sk[0][2]),
                     alpha.get_point(sk[0][3]) ]
            alpha_tetra.append(sorted(tetra, key=lambda tup: tup[0]))

    # Check the tetrahedrons from one list are in the second one
    assert len(alpha_tetra) == len(delaunay_tetra)
    for tetra_from_del in delaunay_tetra:
        assert tetra_from_del in alpha_tetra

def test_3d_tetrahedrons():
    for precision in ['fast', 'safe', 'exact']:
        _3d_tetrahedrons(precision)