summaryrefslogtreecommitdiff
path: root/src/python/test/test_alpha_complex.py
blob: 771213028f4ad4b34c618258227fa6463f087793 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
""" This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
    See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
    Author(s):       Vincent Rouvreau

    Copyright (C) 2016 Inria

    Modification(s):
      - YYYY/MM Author: Description of the modification
"""

from gudhi import AlphaComplex, SimplexTree
import math
import numpy as np
import pytest
try:
    # python3
    from itertools import zip_longest
except ImportError:
    # python2
    from itertools import izip_longest as zip_longest

__author__ = "Vincent Rouvreau"
__copyright__ = "Copyright (C) 2016 Inria"
__license__ = "MIT"


def test_empty_alpha():
    alpha_complex = AlphaComplex(points=[[0, 0]])
    assert alpha_complex.__is_defined() == True


def test_infinite_alpha():
    point_list = [[0, 0], [1, 0], [0, 1], [1, 1]]
    alpha_complex = AlphaComplex(points=point_list)
    assert alpha_complex.__is_defined() == True

    simplex_tree = alpha_complex.create_simplex_tree()
    assert simplex_tree.__is_persistence_defined() == False

    assert simplex_tree.num_simplices() == 11
    assert simplex_tree.num_vertices() == 4

    assert list(simplex_tree.get_filtration()) == [
        ([0], 0.0),
        ([1], 0.0),
        ([2], 0.0),
        ([3], 0.0),
        ([0, 1], 0.25),
        ([0, 2], 0.25),
        ([1, 3], 0.25),
        ([2, 3], 0.25),
        ([1, 2], 0.5),
        ([0, 1, 2], 0.5),
        ([1, 2, 3], 0.5),
    ]

    assert simplex_tree.get_star([0]) == [
        ([0], 0.0),
        ([0, 1], 0.25),
        ([0, 1, 2], 0.5),
        ([0, 2], 0.25),
    ]
    assert simplex_tree.get_cofaces([0], 1) == [([0, 1], 0.25), ([0, 2], 0.25)]

    assert point_list[0] == alpha_complex.get_point(0)
    assert point_list[1] == alpha_complex.get_point(1)
    assert point_list[2] == alpha_complex.get_point(2)
    assert point_list[3] == alpha_complex.get_point(3)
    try:
        alpha_complex.get_point(4) == []
    except IndexError:
        pass
    else:
        assert False
    try:
        alpha_complex.get_point(125) == []
    except IndexError:
        pass
    else:
        assert False


def test_filtered_alpha():
    point_list = [[0, 0], [1, 0], [0, 1], [1, 1]]
    filtered_alpha = AlphaComplex(points=point_list)

    simplex_tree = filtered_alpha.create_simplex_tree(max_alpha_square=0.25)

    assert simplex_tree.num_simplices() == 8
    assert simplex_tree.num_vertices() == 4

    assert point_list[0] == filtered_alpha.get_point(0)
    assert point_list[1] == filtered_alpha.get_point(1)
    assert point_list[2] == filtered_alpha.get_point(2)
    assert point_list[3] == filtered_alpha.get_point(3)
    try:
        filtered_alpha.get_point(4) == []
    except IndexError:
        pass
    else:
        assert False
    try:
        filtered_alpha.get_point(125) == []
    except IndexError:
        pass
    else:
        assert False

    assert list(simplex_tree.get_filtration()) == [
        ([0], 0.0),
        ([1], 0.0),
        ([2], 0.0),
        ([3], 0.0),
        ([0, 1], 0.25),
        ([0, 2], 0.25),
        ([1, 3], 0.25),
        ([2, 3], 0.25),
    ]
    assert simplex_tree.get_star([0]) == [([0], 0.0), ([0, 1], 0.25), ([0, 2], 0.25)]
    assert simplex_tree.get_cofaces([0], 1) == [([0, 1], 0.25), ([0, 2], 0.25)]

def test_safe_alpha_persistence_comparison():
    #generate periodic signal
    time = np.arange(0, 10, 1)
    signal = [math.sin(x) for x in time]
    delta = math.pi
    delayed = [math.sin(x + delta) for x in time]
    
    #construct embedding
    embedding1 = [[signal[i], -signal[i]] for i in range(len(time))]
    embedding2 = [[signal[i], delayed[i]] for i in range(len(time))]
    
    #build alpha complex and simplex tree
    alpha_complex1 = AlphaComplex(points=embedding1)
    simplex_tree1 = alpha_complex1.create_simplex_tree()
    
    alpha_complex2 = AlphaComplex(points=embedding2)
    simplex_tree2 = alpha_complex2.create_simplex_tree()
    
    diag1 = simplex_tree1.persistence()
    diag2 = simplex_tree2.persistence()

    for (first_p, second_p) in zip_longest(diag1, diag2):
        assert first_p[0] == pytest.approx(second_p[0])
        assert first_p[1] == pytest.approx(second_p[1])