summaryrefslogtreecommitdiff
path: root/src/python/test/test_representations.py
blob: f4ffbdc1a56c48d7b1d8a13641c702958182ccaa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import pytest
import random

from sklearn.cluster import KMeans

# Vectorization
from gudhi.representations import (Landscape, Silhouette, BettiCurve, ComplexPolynomial,\
  TopologicalVector, PersistenceImage, Entropy)

# Preprocessing
from gudhi.representations import (BirthPersistenceTransform, Clamping, DiagramScaler, Padding, ProminentPoints, \
  DiagramSelector)

# Kernel
from gudhi.representations import (PersistenceWeightedGaussianKernel, \
  PersistenceScaleSpaceKernel, SlicedWassersteinDistance,\
  SlicedWassersteinKernel, PersistenceFisherKernel, WassersteinDistance)


def test_representations_examples():
    # Disable graphics for testing purposes
    plt.show = lambda: None
    here = os.path.dirname(os.path.realpath(__file__))
    sys.path.append(here + "/../example")
    import diagram_vectorizations_distances_kernels

    return None


from gudhi.representations.vector_methods import Atol
from gudhi.representations.metrics import *
from gudhi.representations.kernel_methods import *


def _n_diags(n):
    l = []
    for _ in range(n):
        a = np.random.rand(50, 2)
        a[:, 1] += a[:, 0]  # So that y >= x
        l.append(a)
    return l


def test_multiple():
    l1 = _n_diags(9)
    l2 = _n_diags(11)
    l1b = l1.copy()
    d1 = pairwise_persistence_diagram_distances(l1, e=0.00001, n_jobs=4)
    d2 = BottleneckDistance(epsilon=0.00001).fit_transform(l1)
    d3 = pairwise_persistence_diagram_distances(l1, l1b, e=0.00001, n_jobs=4)
    assert d1 == pytest.approx(d2)
    assert d3 == pytest.approx(d2, abs=1e-5)  # Because of 0 entries (on the diagonal)
    d1 = pairwise_persistence_diagram_distances(l1, l2, metric="wasserstein", order=2, internal_p=2)
    d2 = WassersteinDistance(order=2, internal_p=2, n_jobs=4).fit(l2).transform(l1)
    print(d1.shape, d2.shape)
    assert d1 == pytest.approx(d2, rel=0.02)


# Test sorted values as points order can be inverted, and sorted test is not documentation-friendly
# Note the test below must be up to date with the Atol class documentation
def test_atol_doc():
    a = np.array([[1, 2, 4], [1, 4, 0], [1, 0, 4]])
    b = np.array([[4, 2, 0], [4, 4, 0], [4, 0, 2]])
    c = np.array([[3, 2, -1], [1, 2, -1]])

    atol_vectoriser = Atol(quantiser=KMeans(n_clusters=2, random_state=202006))
    # Atol will do
    # X = np.concatenate([a,b,c])
    # kmeans = KMeans(n_clusters=2, random_state=202006).fit(X) 
    # kmeans.labels_ will be : array([1, 0, 1, 0, 0, 1, 0, 0])
    first_cluster = np.asarray([a[0], a[2], b[2]])
    second_cluster = np.asarray([a[1], b[0], b[2], c[0], c[1]])

    # Check the center of the first_cluster and second_cluster are in Atol centers
    centers = atol_vectoriser.fit(X=[a, b, c]).centers
    np.isclose(centers, first_cluster.mean(axis=0)).all(1).any() 
    np.isclose(centers, second_cluster.mean(axis=0)).all(1).any() 

    vectorization = atol_vectoriser.transform(X=[a, b, c])
    assert np.allclose(vectorization[0], atol_vectoriser(a))
    assert np.allclose(vectorization[1], atol_vectoriser(b))
    assert np.allclose(vectorization[2], atol_vectoriser(c))


def test_dummy_atol():
    a = np.array([[1, 2, 4], [1, 4, 0], [1, 0, 4]])
    b = np.array([[4, 2, 0], [4, 4, 0], [4, 0, 2]])
    c = np.array([[3, 2, -1], [1, 2, -1]])

    for weighting_method in ["cloud", "iidproba"]:
        for contrast in ["gaussian", "laplacian", "indicator"]:
            atol_vectoriser = Atol(
                quantiser=KMeans(n_clusters=1, random_state=202006),
                weighting_method=weighting_method,
                contrast=contrast,
            )
            atol_vectoriser.fit([a, b, c])
            atol_vectoriser(a)
            atol_vectoriser.transform(X=[a, b, c])


from gudhi.representations.vector_methods import BettiCurve

def test_infinity():
    a = np.array([[1.0, 8.0], [2.0, np.inf], [3.0, 4.0]])
    c = BettiCurve(20, [0.0, 10.0])(a)
    assert c[1] == 0
    assert c[7] == 3
    assert c[9] == 2

def test_preprocessing_empty_diagrams():
    empty_diag = np.empty(shape = [0, 2])
    assert not np.any(BirthPersistenceTransform()(empty_diag))
    assert not np.any(Clamping().fit_transform(empty_diag))
    assert not np.any(DiagramScaler()(empty_diag))
    assert not np.any(Padding()(empty_diag))
    assert not np.any(ProminentPoints()(empty_diag))
    assert not np.any(DiagramSelector()(empty_diag))

def pow(n):
  return lambda x: np.power(x[1]-x[0],n)

def test_vectorization_empty_diagrams():
    empty_diag = np.empty(shape = [0, 2])
    random_resolution = random.randint(50,100)*10 # between 500 and 1000
    print("resolution = ", random_resolution)
    lsc = Landscape(resolution=random_resolution)(empty_diag)
    assert not np.any(lsc)
    assert lsc.shape[0]%random_resolution == 0
    slt = Silhouette(resolution=random_resolution, weight=pow(2))(empty_diag)
    assert not np.any(slt)
    assert slt.shape[0] == random_resolution
    btc = BettiCurve(resolution=random_resolution)(empty_diag)
    assert not np.any(btc)
    assert btc.shape[0] == random_resolution
    cpp = ComplexPolynomial(threshold=random_resolution, polynomial_type="T")(empty_diag)
    assert not np.any(cpp)
    assert cpp.shape[0] == random_resolution
    tpv = TopologicalVector(threshold=random_resolution)(empty_diag)
    assert tpv.shape[0] == random_resolution
    assert not np.any(tpv)
    prmg = PersistenceImage(resolution=[random_resolution,random_resolution])(empty_diag)
    assert not np.any(prmg)
    assert prmg.shape[0] == random_resolution * random_resolution
    sce = Entropy(mode="scalar", resolution=random_resolution)(empty_diag)
    assert not np.any(sce)
    assert sce.shape[0] == 1
    scv = Entropy(mode="vector", normalized=False, resolution=random_resolution)(empty_diag)
    assert not np.any(scv)
    assert scv.shape[0] == random_resolution
    
def test_entropy_miscalculation():
    diag_ex = np.array([[0.0,1.0], [0.0,1.0], [0.0,2.0]])
    def pe(pd):
        l = pd[:,1] - pd[:,0]
        l = l/sum(l)
        return -np.dot(l, np.log(l))
    sce = Entropy(mode="scalar")
    assert [[pe(diag_ex)]] == sce.fit_transform([diag_ex])
    sce = Entropy(mode="vector", resolution=4, normalized=False, keep_endpoints=True)
    pef = [-1/4*np.log(1/4)-1/4*np.log(1/4)-1/2*np.log(1/2),
           -1/4*np.log(1/4)-1/4*np.log(1/4)-1/2*np.log(1/2),
           -1/2*np.log(1/2), 
           0.0]
    assert all(([pef] == sce.fit_transform([diag_ex]))[0])
    sce = Entropy(mode="vector", resolution=4, normalized=True)
    pefN = (sce.fit_transform([diag_ex]))[0]
    area = np.linalg.norm(pefN, ord=1)
    assert area==pytest.approx(1)
        
def test_kernel_empty_diagrams():
    empty_diag = np.empty(shape = [0, 2])
    assert SlicedWassersteinDistance(num_directions=100)(empty_diag, empty_diag) == 0.
    assert SlicedWassersteinKernel(num_directions=100, bandwidth=1.)(empty_diag, empty_diag) == 1.
    assert WassersteinDistance(mode="hera", delta=0.0001)(empty_diag, empty_diag) == 0.
    assert WassersteinDistance(mode="pot")(empty_diag, empty_diag) == 0.
    assert BottleneckDistance(epsilon=.001)(empty_diag, empty_diag) == 0.
    assert BottleneckDistance()(empty_diag, empty_diag) == 0.
#    PersistenceWeightedGaussianKernel(bandwidth=1., kernel_approx=None, weight=arctan(1.,1.))(empty_diag, empty_diag)
#    PersistenceWeightedGaussianKernel(kernel_approx=RBFSampler(gamma=1./2, n_components=100000).fit(np.ones([1,2])), weight=arctan(1.,1.))(empty_diag, empty_diag)
#    PersistenceScaleSpaceKernel(bandwidth=1.)(empty_diag, empty_diag)
#    PersistenceScaleSpaceKernel(kernel_approx=RBFSampler(gamma=1./2, n_components=100000).fit(np.ones([1,2])))(empty_diag, empty_diag)
#    PersistenceFisherKernel(bandwidth_fisher=1., bandwidth=1.)(empty_diag, empty_diag)
#    PersistenceFisherKernel(bandwidth_fisher=1., bandwidth=1., kernel_approx=RBFSampler(gamma=1./2, n_components=100000).fit(np.ones([1,2])))(empty_diag, empty_diag)


def test_silhouette_permutation_invariance():
    dgm = _n_diags(1)[0]
    dgm_permuted = dgm[np.random.permutation(dgm.shape[0]).astype(int)]
    random_resolution = random.randint(50, 100) * 10
    slt = Silhouette(resolution=random_resolution, weight=pow(2))

    assert np.all(np.isclose(slt(dgm), slt(dgm_permuted)))


def test_silhouette_multiplication_invariance():
    dgm = _n_diags(1)[0]
    n_repetitions = np.random.randint(2, high=10)
    dgm_augmented = np.repeat(dgm, repeats=n_repetitions, axis=0)

    random_resolution = random.randint(50, 100) * 10
    slt = Silhouette(resolution=random_resolution, weight=pow(2))
    assert np.all(np.isclose(slt(dgm), slt(dgm_augmented)))


def test_silhouette_numeric():
    dgm = np.array([[2., 3.], [5., 6.]])
    slt = Silhouette(resolution=9, weight=pow(1), sample_range=[2., 6.])
    #slt.fit([dgm])
    # x_values = array([2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6.])

    expected_silhouette = np.array([0., 0.5, 0., 0., 0., 0., 0., 0.5, 0.])/np.sqrt(2)
    output_silhouette = slt(dgm)
    assert np.all(np.isclose(output_silhouette, expected_silhouette))


def test_landscape_small_persistence_invariance():
    dgm = np.array([[2., 6.], [2., 5.], [3., 7.]])
    small_persistence_pts = np.random.rand(10, 2)
    small_persistence_pts[:, 1] += small_persistence_pts[:, 0]
    small_persistence_pts += np.min(dgm)
    dgm_augmented = np.concatenate([dgm, small_persistence_pts], axis=0)

    lds = Landscape(num_landscapes=2, resolution=5)
    lds_dgm, lds_dgm_augmented = lds(dgm), lds(dgm_augmented)

    assert np.all(np.isclose(lds_dgm, lds_dgm_augmented))


def test_landscape_numeric():
    dgm = np.array([[2., 6.], [3., 5.]])
    lds_ref = np.array([
        0., 0.5, 1., 1.5, 2., 1.5, 1., 0.5, 0.,  # tent of [2, 6]
        0., 0., 0., 0.5, 1., 0.5, 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0.,
    ])
    lds_ref *= np.sqrt(2)
    lds = Landscape(num_landscapes=4, resolution=9, sample_range=[2., 6.])
    lds_dgm = lds(dgm)
    assert np.all(np.isclose(lds_dgm, lds_ref))


def test_landscape_nan_range():
    dgm = np.array([[2., 6.], [3., 5.]])
    lds = Landscape(num_landscapes=2, resolution=9, sample_range=[np.nan, 6.])
    lds_dgm = lds(dgm)
    assert (lds.sample_range_fixed[0] == 2) & (lds.sample_range_fixed[1] == 6)
    assert lds.new_resolution == 10

def test_endpoints():
    diags = [ np.array([[2., 3.]]) ]
    for vec in [ Landscape(), Silhouette(), BettiCurve(), Entropy(mode="vector") ]:
        vec.fit(diags)
        assert vec.grid_[0] > 2 and vec.grid_[-1] < 3
    for vec in [ Landscape(keep_endpoints=True), Silhouette(keep_endpoints=True), BettiCurve(keep_endpoints=True), Entropy(mode="vector", keep_endpoints=True)]:
        vec.fit(diags)
        assert vec.grid_[0] == 2 and vec.grid_[-1] == 3
    vec = BettiCurve(resolution=None)
    vec.fit(diags)
    assert np.equal(vec.grid_, [-np.inf, 2., 3.]).all()

def test_get_params():
    for vec in [ Landscape(), Silhouette(), BettiCurve(), Entropy(mode="vector") ]:
        vec.get_params()