summaryrefslogtreecommitdiff
path: root/utilities/Alpha_complex/weighted_periodic_alpha_complex_3d_persistence.cpp
blob: 5321bb0ac7ac9c234895c3cf1e6ad771bf121da5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Vincent Rouvreau
 *                     Pawel Dlotko - 2017 - Swansea University, UK
 *
 *    Copyright (C) 2014  INRIA
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <boost/variant.hpp>

#include <gudhi/Simplex_tree.h>
#include <gudhi/Persistent_cohomology.h>
#include <gudhi/Points_3D_off_io.h>

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Periodic_3_regular_triangulation_traits_3.h>
#include <CGAL/Periodic_3_regular_triangulation_3.h>
#include <CGAL/Alpha_shape_3.h>
#include <CGAL/iterator.h>

#include <fstream>
#include <cmath>
#include <string>
#include <tuple>
#include <map>
#include <utility>
#include <vector>
#include <cstdlib>

#include "alpha_complex_3d_helper.h"

// Traits
using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel;
using PK = CGAL::Periodic_3_regular_triangulation_traits_3<Kernel>;

// Vertex type
using DsVb = CGAL::Periodic_3_triangulation_ds_vertex_base_3<>;
using Vb = CGAL::Regular_triangulation_vertex_base_3<PK, DsVb>;
using AsVb = CGAL::Alpha_shape_vertex_base_3<PK, Vb>;
// Cell type
using DsCb = CGAL::Periodic_3_triangulation_ds_cell_base_3<>;
using Cb = CGAL::Regular_triangulation_cell_base_3<PK, DsCb>;
using AsCb = CGAL::Alpha_shape_cell_base_3<PK, Cb>;
using Tds = CGAL::Triangulation_data_structure_3<AsVb, AsCb>;
using P3RT3 = CGAL::Periodic_3_regular_triangulation_3<PK, Tds>;
using Alpha_shape_3 = CGAL::Alpha_shape_3<P3RT3>;

using Point_3 = P3RT3::Bare_point;
using Weighted_point_3 = P3RT3::Weighted_point;

// filtration with alpha values needed type definition
using Alpha_value_type = Alpha_shape_3::FT;
using Object = CGAL::Object;
using Dispatch =
    CGAL::Dispatch_output_iterator<CGAL::cpp11::tuple<Object, Alpha_value_type>,
                                   CGAL::cpp11::tuple<std::back_insert_iterator<std::vector<Object> >,
                                                      std::back_insert_iterator<std::vector<Alpha_value_type> > > >;
using Cell_handle = Alpha_shape_3::Cell_handle;
using Facet = Alpha_shape_3::Facet;
using Edge_3 = Alpha_shape_3::Edge;
using Vertex_handle = Alpha_shape_3::Vertex_handle;
using Vertex_list = std::vector<Alpha_shape_3::Vertex_handle>;

// gudhi type definition
using ST = Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence>;
using Filtration_value = ST::Filtration_value;
using Simplex_tree_vertex = ST::Vertex_handle;
using Alpha_shape_simplex_tree_map = std::map<Alpha_shape_3::Vertex_handle, Simplex_tree_vertex>;
using Simplex_tree_vector_vertex = std::vector<Simplex_tree_vertex>;
using Persistent_cohomology =
    Gudhi::persistent_cohomology::Persistent_cohomology<ST, Gudhi::persistent_cohomology::Field_Zp>;

void usage(const std::string& progName) {
  std::cerr << "Usage: " << progName << " path_to_the_OFF_file path_to_weight_file path_to_the_cuboid_file "
                                        "coeff_field_characteristic[integer > 0] min_persistence[float >= -1.0]\n";
  exit(-1);
}

int main(int argc, char* const argv[]) {
  // program args management
  if (argc != 6) {
    std::cerr << "Error: Number of arguments (" << argc << ") is not correct\n";
    usage(argv[0]);
  }

  int coeff_field_characteristic = atoi(argv[4]);
  Filtration_value min_persistence = strtof(argv[5], nullptr);

  // Read points from file
  std::string offInputFile(argv[1]);
  // Read the OFF file (input file name given as parameter) and triangulate points
  Gudhi::Points_3D_off_reader<Point_3> off_reader(offInputFile);
  // Check the read operation was correct
  if (!off_reader.is_valid()) {
    std::cerr << "Unable to read file " << offInputFile << std::endl;
    usage(argv[0]);
  }

  // Retrieve the points
  std::vector<Point_3> lp = off_reader.get_point_cloud();

  // Read iso_cuboid_3 information from file
  std::ifstream iso_cuboid_str(argv[3]);
  double x_min, y_min, z_min, x_max, y_max, z_max;
  if (iso_cuboid_str.is_open()) {
    if (!(iso_cuboid_str >> x_min >> y_min >> z_min >> x_max >> y_max >> z_max)) {
      std::cerr << argv[3] << " - Bad file format." << std::endl;
      usage(argv[0]);
    }

  } else {
    std::cerr << "Unable to read file " << argv[3] << std::endl;
    usage(argv[0]);
  }
  // Checking if the cuboid is the same in x,y and z direction. If not, CGAL will not process it.
  if ((x_max - x_min != y_max - y_min) || (x_max - x_min != z_max - z_min) || (z_max - z_min != y_max - y_min)) {
    std::cerr << "The size of the cuboid in every directions is not the same." << std::endl;
    exit(-1);
  }

  double maximal_possible_weight = 0.015625 * (x_max - x_min) * (x_max - x_min);

  // Read weights information from file
  std::ifstream weights_ifstr(argv[2]);
  std::vector<Weighted_point_3> wp;
  if (weights_ifstr.is_open()) {
    double weight = 0.0;
    std::size_t index = 0;
    wp.reserve(lp.size());
    // Attempt read the weight in a double format, return false if it fails
    while ((weights_ifstr >> weight) && (index < lp.size())) {
      if ((weight >= maximal_possible_weight) || (weight < 0)) {
        std::cerr << "At line " << (index + 1) << ", the weight (" << weight
                  << ") is negative or more than or equal to maximal possible weight (" << maximal_possible_weight
                  << ") = 1/64*cuboid length squared, which is not an acceptable input." << std::endl;
        exit(-1);
      }

      wp.push_back(Weighted_point_3(lp[index], weight));
      index++;
    }
    if (index != lp.size()) {
      std::cerr << "Bad number of weights in file " << argv[2] << std::endl;
      usage(argv[0]);
    }
  } else {
    std::cerr << "Unable to read file " << argv[2] << std::endl;
    usage(argv[0]);
  }

  // Define the periodic cube
  P3RT3 prt(PK::Iso_cuboid_3(x_min, y_min, z_min, x_max, y_max, z_max));
  // Heuristic for inserting large point sets (if pts is reasonably large)
  prt.insert(wp.begin(), wp.end(), true);
  // As prt won't be modified anymore switch to 1-sheeted cover if possible
  if (prt.is_triangulation_in_1_sheet()) {
    prt.convert_to_1_sheeted_covering();
  } else {
    std::cerr << "ERROR: we were not able to construct a triangulation within a single periodic domain." << std::endl;
    exit(-1);
  }
  std::cout << "Weighted Periodic Delaunay computed." << std::endl;

  // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode. This is the default mode
  // Maybe need to set it to GENERAL mode
  Alpha_shape_3 as(prt, 0, Alpha_shape_3::GENERAL);

  // filtration with alpha values from alpha shape
  std::vector<Object> the_objects;
  std::vector<Alpha_value_type> the_alpha_values;

  Dispatch disp = CGAL::dispatch_output<Object, Alpha_value_type>(std::back_inserter(the_objects),
                                                                  std::back_inserter(the_alpha_values));

  as.filtration_with_alpha_values(disp);
#ifdef DEBUG_TRACES
  std::cout << "filtration_with_alpha_values returns : " << the_objects.size() << " objects" << std::endl;
#endif  // DEBUG_TRACES

  Alpha_shape_3::size_type count_vertices = 0;
  Alpha_shape_3::size_type count_edges = 0;
  Alpha_shape_3::size_type count_facets = 0;
  Alpha_shape_3::size_type count_cells = 0;

  // Loop on objects vector
  Vertex_list vertex_list;
  ST simplex_tree;
  Alpha_shape_simplex_tree_map map_cgal_simplex_tree;
  std::vector<Alpha_value_type>::iterator the_alpha_value_iterator = the_alpha_values.begin();
  for (auto object_iterator : the_objects) {
    // Retrieve Alpha shape vertex list from object
    if (const Cell_handle* cell = CGAL::object_cast<Cell_handle>(&object_iterator)) {
      vertex_list = from_cell<Vertex_list, Cell_handle>(*cell);
      count_cells++;
    } else if (const Facet* facet = CGAL::object_cast<Facet>(&object_iterator)) {
      vertex_list = from_facet<Vertex_list, Facet>(*facet);
      count_facets++;
    } else if (const Edge_3* edge = CGAL::object_cast<Edge_3>(&object_iterator)) {
      vertex_list = from_edge<Vertex_list, Edge_3>(*edge);
      count_edges++;
    } else if (const Vertex_handle* vertex = CGAL::object_cast<Vertex_handle>(&object_iterator)) {
      count_vertices++;
      vertex_list = from_vertex<Vertex_list, Vertex_handle>(*vertex);
    }
    // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex
    Simplex_tree_vector_vertex the_simplex;
    for (auto the_alpha_shape_vertex : vertex_list) {
      Alpha_shape_simplex_tree_map::iterator the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex);
      if (the_map_iterator == map_cgal_simplex_tree.end()) {
        // alpha shape not found
        Simplex_tree_vertex vertex = map_cgal_simplex_tree.size();
#ifdef DEBUG_TRACES
        std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl;
#endif  // DEBUG_TRACES
        the_simplex.push_back(vertex);
        map_cgal_simplex_tree.emplace(the_alpha_shape_vertex, vertex);
      } else {
        // alpha shape found
        Simplex_tree_vertex vertex = the_map_iterator->second;
#ifdef DEBUG_TRACES
        std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl;
#endif  // DEBUG_TRACES
        the_simplex.push_back(vertex);
      }
    }
    // Construction of the simplex_tree
    Filtration_value filtr = /*std::sqrt*/ (*the_alpha_value_iterator);
#ifdef DEBUG_TRACES
    std::cout << "filtration = " << filtr << std::endl;
#endif  // DEBUG_TRACES
    simplex_tree.insert_simplex(the_simplex, filtr);
    if (the_alpha_value_iterator != the_alpha_values.end())
      ++the_alpha_value_iterator;
    else
      std::cout << "This shall not happen" << std::endl;
  }

#ifdef DEBUG_TRACES
  std::cout << "vertices \t\t" << count_vertices << std::endl;
  std::cout << "edges \t\t" << count_edges << std::endl;
  std::cout << "facets \t\t" << count_facets << std::endl;
  std::cout << "cells \t\t" << count_cells << std::endl;

  std::cout << "Information of the Simplex Tree: " << std::endl;
  std::cout << "  Number of vertices = " << simplex_tree.num_vertices() << " ";
  std::cout << "  Number of simplices = " << simplex_tree.num_simplices() << std::endl << std::endl;
  std::cout << "  Dimension = " << simplex_tree.dimension() << " ";
#endif  // DEBUG_TRACES

#ifdef DEBUG_TRACES
  std::cout << "Iterator on vertices: " << std::endl;
  for (auto vertex : simplex_tree.complex_vertex_range()) {
    std::cout << vertex << " ";
  }
#endif  // DEBUG_TRACES

  // Sort the simplices in the order of the filtration
  simplex_tree.initialize_filtration();

  std::cout << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl;
  // Compute the persistence diagram of the complex
  Persistent_cohomology pcoh(simplex_tree, true);
  // initializes the coefficient field for homology
  pcoh.init_coefficients(coeff_field_characteristic);

  pcoh.compute_persistent_cohomology(min_persistence);

  pcoh.output_diagram();

  return 0;
}