summaryrefslogtreecommitdiff
path: root/utilities/Witness_complex/strong_witness_persistence.cpp
blob: f386e9923a92b6ea8e76335df129e17a0118f4cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Siargey Kachanovich
 *
 *    Copyright (C) 2016 Inria
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <gudhi/Simplex_tree.h>
#include <gudhi/Euclidean_strong_witness_complex.h>
#include <gudhi/Persistent_cohomology.h>
#include <gudhi/Points_off_io.h>
#include <gudhi/pick_n_random_points.h>
#include <gudhi/choose_n_farthest_points.h>

#include <boost/program_options.hpp>

#include <CGAL/Epick_d.h>

#include <string>
#include <vector>
#include <limits>  // infinity

using K = CGAL::Epick_d<CGAL::Dynamic_dimension_tag>;
using Point_d = K::Point_d;

using Point_vector = std::vector<Point_d>;
using Strong_witness_complex = Gudhi::witness_complex::Euclidean_strong_witness_complex<K>;
using SimplexTree = Gudhi::Simplex_tree<>;

using Filtration_value = SimplexTree::Filtration_value;

using Field_Zp = Gudhi::persistent_cohomology::Field_Zp;
using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology<SimplexTree, Field_Zp>;

void program_options(int argc, char* argv[], int& nbL, std::string& file_name, std::string& filediag,
                     Filtration_value& max_squared_alpha, int& p, int& dim_max, Filtration_value& min_persistence);

int main(int argc, char* argv[]) {
  std::string file_name;
  std::string filediag;
  Filtration_value max_squared_alpha;
  int p, nbL, lim_d;
  Filtration_value min_persistence;
  SimplexTree simplex_tree;

  program_options(argc, argv, nbL, file_name, filediag, max_squared_alpha, p, lim_d, min_persistence);

  // Extract the points from the file file_name
  Point_vector witnesses, landmarks;
  Gudhi::Points_off_reader<Point_d> off_reader(file_name);
  if (!off_reader.is_valid()) {
    std::cerr << "Witness complex - Unable to read file " << file_name << "\n";
    exit(-1);  // ----- >>
  }
  witnesses = Point_vector(off_reader.get_point_cloud());
  std::cout << "Successfully read " << witnesses.size() << " points.\n";
  std::cout << "Ambient dimension is " << witnesses[0].dimension() << ".\n";

  // Choose landmarks (decomment one of the following two lines)
  // Gudhi::subsampling::pick_n_random_points(point_vector, nbL, std::back_inserter(landmarks));
  Gudhi::subsampling::choose_n_farthest_points(K(), witnesses, nbL, Gudhi::subsampling::random_starting_point,
                                               std::back_inserter(landmarks));

  // Compute witness complex
  Strong_witness_complex strong_witness_complex(landmarks, witnesses);

  strong_witness_complex.create_complex(simplex_tree, max_squared_alpha, lim_d);

  std::cout << "The complex contains " << simplex_tree.num_simplices() << " simplices \n";
  std::cout << "   and has dimension " << simplex_tree.dimension() << " \n";

  // Sort the simplices in the order of the filtration
  simplex_tree.initialize_filtration();

  // Compute the persistence diagram of the complex
  Persistent_cohomology pcoh(simplex_tree);
  // initializes the coefficient field for homology
  pcoh.init_coefficients(p);

  pcoh.compute_persistent_cohomology(min_persistence);

  // Output the diagram in filediag
  if (filediag.empty()) {
    pcoh.output_diagram();
  } else {
    std::ofstream out(filediag);
    pcoh.output_diagram(out);
    out.close();
  }

  return 0;
}

void program_options(int argc, char* argv[], int& nbL, std::string& file_name, std::string& filediag,
                     Filtration_value& max_squared_alpha, int& p, int& dim_max, Filtration_value& min_persistence) {
  namespace po = boost::program_options;

  po::options_description hidden("Hidden options");
  hidden.add_options()("input-file", po::value<std::string>(&file_name),
                       "Name of file containing a point set in off format.");

  po::options_description visible("Allowed options", 100);
  Filtration_value default_alpha = std::numeric_limits<Filtration_value>::infinity();
  visible.add_options()("help,h", "produce help message")("landmarks,l", po::value<int>(&nbL),
                                                          "Number of landmarks to choose from the point cloud.")(
      "output-file,o", po::value<std::string>(&filediag)->default_value(std::string()),
      "Name of file in which the persistence diagram is written. Default print in std::cout")(
      "max-sq-alpha,a", po::value<Filtration_value>(&max_squared_alpha)->default_value(default_alpha),
      "Maximal squared relaxation parameter.")(
      "field-charac,p", po::value<int>(&p)->default_value(11),
      "Characteristic p of the coefficient field Z/pZ for computing homology.")(
      "min-persistence,m", po::value<Filtration_value>(&min_persistence)->default_value(0),
      "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length "
      "intervals")("cpx-dimension,d", po::value<int>(&dim_max)->default_value(std::numeric_limits<int>::max()),
                   "Maximal dimension of the strong witness complex we want to compute.");

  po::positional_options_description pos;
  pos.add("input-file", 1);

  po::options_description all;
  all.add(visible).add(hidden);
  po::variables_map vm;

  po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm);
  po::notify(vm);

  if (vm.count("help") || !vm.count("input-file")) {
    std::cout << std::endl;
    std::cout << "Compute the persistent homology with coefficient field Z/pZ \n";
    std::cout << "of a Strong witness complex defined on a set of input points.\n \n";
    std::cout << "The output diagram contains one bar per line, written with the convention: \n";
    std::cout << "   p   dim b d \n";
    std::cout << "where dim is the dimension of the homological feature,\n";
    std::cout << "b and d are respectively the birth and death of the feature and \n";
    std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;

    std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl;
    std::cout << visible << std::endl;
    exit(-1);
  }
}