summaryrefslogtreecommitdiff
path: root/pyspike/function.py
blob: 047c88adc1e869e4f5833d94b0cf60275f94dcf3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
""" function.py

Module containing classes representing piece-wise constant and piece-wise
linear functions.

Copyright 2014, Mario Mulansky <mario.mulansky@gmx.net>

Distributed under the BSD License

"""
from __future__ import print_function

import numpy as np
import collections


##############################################################
# PieceWiseConstFunc
##############################################################
class PieceWiseConstFunc(object):
    """ A class representing a piece-wise constant function. """

    def __init__(self, x, y):
        """ Constructs the piece-wise const function.

        :param x: array of length N+1 defining the edges of the intervals of
                  the pwc function.
        :param y: array of length N defining the function values at the
                  intervals.
        """
        # convert parameters to arrays, also ensures copying
        self.x = np.array(x)
        self.y = np.array(y)

    def copy(self):
        """ Returns a copy of itself

        :rtype: :class:`PieceWiseConstFunc`
        """
        return PieceWiseConstFunc(self.x, self.y)

    def almost_equal(self, other, decimal=14):
        """ Checks if the function is equal to another function up to `decimal`
        precision.

        :param other: another :class:`PieceWiseConstFunc`
        :returns: True if the two functions are equal up to `decimal` decimals,
                  False otherwise
        :rtype: bool
        """
        eps = 10.0**(-decimal)
        return np.allclose(self.x, other.x, atol=eps, rtol=0.0) and \
            np.allclose(self.y, other.y, atol=eps, rtol=0.0)

    def get_plottable_data(self):
        """ Returns two arrays containing x- and y-coordinates for immeditate
        plotting of the piece-wise function.

        :returns: (x_plot, y_plot) containing plottable data
        :rtype: pair of np.array

        Example::

            x, y = f.get_plottable_data()
            plt.plot(x, y, '-o', label="Piece-wise const function")
        """

        x_plot = np.empty(2*len(self.x)-2)
        x_plot[0] = self.x[0]
        x_plot[1::2] = self.x[1:]
        x_plot[2::2] = self.x[1:-1]
        y_plot = np.empty(2*len(self.y))
        y_plot[::2] = self.y
        y_plot[1::2] = self.y

        return x_plot, y_plot

    def integral(self, interval=None):
        """ Returns the integral over the given interval.

        :param interval: integration interval given as a pair of floats, if
                         None the integral over the whole function is computed.
        :type interval: Pair of floats or None.
        :returns: the integral
        :rtype: float
        """
        if interval is None:
            # no interval given, integrate over the whole spike train
            a = np.sum((self.x[1:]-self.x[:-1]) * self.y)
        else:
            # find the indices corresponding to the interval
            start_ind = np.searchsorted(self.x, interval[0], side='right')
            end_ind = np.searchsorted(self.x, interval[1], side='left')-1
            assert start_ind > 0 and end_ind < len(self.x), \
                "Invalid averaging interval"
            # first the contribution from between the indices
            a = np.sum((self.x[start_ind+1:end_ind+1] -
                        self.x[start_ind:end_ind]) *
                       self.y[start_ind:end_ind])
            # correction from start to first index
            a += (self.x[start_ind]-interval[0]) * self.y[start_ind-1]
            # correction from last index to end
            a += (interval[1]-self.x[end_ind]) * self.y[end_ind]
        return a

    def avrg(self, interval=None):
        """ Computes the average of the piece-wise const function:
        :math:`a = 1/T int_0^T f(x) dx` where T is the length of the interval.

        :param interval: averaging interval given as a pair of floats, a
                         sequence of pairs for averaging multiple intervals, or
                         None, if None the average over the whole function is
                         computed.
        :type interval: Pair, sequence of pairs, or None.
        :returns: the average a.
        :rtype: float
        """
        if interval is None:
            # no interval given, average over the whole spike train
            return self.integral() / (self.x[-1]-self.x[0])

        # check if interval is as sequence
        assert isinstance(interval, collections.Sequence), \
            "Invalid value for `interval`. None, Sequence or Tuple expected."
        # check if interval is a sequence of intervals
        if not isinstance(interval[0], collections.Sequence):
            # just one interval
            a = self.integral(interval) / (interval[1]-interval[0])
        else:
            # several intervals
            a = 0.0
            int_length = 0.0
            for ival in interval:
                a += self.integral(ival)
                int_length += ival[1] - ival[0]
            a /= int_length
        return a

    def add(self, f):
        """ Adds another PieceWiseConst function to this function.
        Note: only functions defined on the same interval can be summed.

        :param f: :class:`PieceWiseConstFunc` function to be added.
        :rtype: None
        """
        assert self.x[0] == f.x[0], "The functions have different intervals"
        assert self.x[-1] == f.x[-1], "The functions have different intervals"

        # cython version
        try:
            from cython_add import add_piece_wise_const_cython as \
                add_piece_wise_const_impl
        except ImportError:
            print("Warning: add_piece_wise_const_cython not found. Make sure \
that PySpike is installed by running\n 'python setup.py build_ext --inplace'! \
\n Falling back to slow python backend.")
            # use python backend
            from python_backend import add_piece_wise_const_python as \
                add_piece_wise_const_impl

        self.x, self.y = add_piece_wise_const_impl(self.x, self.y, f.x, f.y)

    def mul_scalar(self, fac):
        """ Multiplies the function with a scalar value

        :param fac: Value to multiply
        :type fac: double
        :rtype: None
        """
        self.y *= fac


##############################################################
# PieceWiseLinFunc
##############################################################
class PieceWiseLinFunc:
    """ A class representing a piece-wise linear function. """

    def __init__(self, x, y1, y2):
        """ Constructs the piece-wise linear function.

        :param x: array of length N+1 defining the edges of the intervals of
                  the pwc function.
        :param y1: array of length N defining the function values at the left
                  of the intervals.
        :param y2: array of length N defining the function values at the right
                  of the intervals.
        """
        # convert to array, which also ensures copying
        self.x = np.array(x)
        self.y1 = np.array(y1)
        self.y2 = np.array(y2)

    def copy(self):
        """ Returns a copy of itself

        :rtype: :class:`PieceWiseLinFunc`
        """
        return PieceWiseLinFunc(self.x, self.y1, self.y2)

    def almost_equal(self, other, decimal=14):
        """ Checks if the function is equal to another function up to `decimal`
        precision.

        :param other: another :class:`PieceWiseLinFunc`
        :returns: True if the two functions are equal up to `decimal` decimals,
                  False otherwise
        :rtype: bool
        """
        eps = 10.0**(-decimal)
        return np.allclose(self.x, other.x, atol=eps, rtol=0.0) and \
            np.allclose(self.y1, other.y1, atol=eps, rtol=0.0) and \
            np.allclose(self.y2, other.y2, atol=eps, rtol=0.0)

    def get_plottable_data(self):
        """ Returns two arrays containing x- and y-coordinates for immeditate
        plotting of the piece-wise function.

        :returns: (x_plot, y_plot) containing plottable data
        :rtype: pair of np.array

        Example::

            x, y = f.get_plottable_data()
            plt.plot(x, y, '-o', label="Piece-wise const function")
        """
        x_plot = np.empty(2*len(self.x)-2)
        x_plot[0] = self.x[0]
        x_plot[1::2] = self.x[1:]
        x_plot[2::2] = self.x[1:-1]
        y_plot = np.empty_like(x_plot)
        y_plot[0::2] = self.y1
        y_plot[1::2] = self.y2
        return x_plot, y_plot

    def integral(self, interval=None):
        """ Returns the integral over the given interval.

        :param interval: integration interval given as a pair of floats, if
                         None the integral over the whole function is computed.
        :type interval: Pair of floats or None.
        :returns: the integral
        :rtype: float
        """

        def intermediate_value(x0, x1, y0, y1, x):
            """ computes the intermediate value of a linear function """
            return y0 + (y1-y0)*(x-x0)/(x1-x0)

        if interval is None:
            # no interval given, integrate over the whole spike train
            integral = np.sum((self.x[1:]-self.x[:-1]) * 0.5*(self.y1+self.y2))
        else:
            # find the indices corresponding to the interval
            start_ind = np.searchsorted(self.x, interval[0], side='right')
            end_ind = np.searchsorted(self.x, interval[1], side='left')-1
            assert start_ind > 0 and end_ind < len(self.x), \
                "Invalid averaging interval"
            # first the contribution from between the indices
            integral = np.sum((self.x[start_ind+1:end_ind+1] -
                               self.x[start_ind:end_ind]) *
                              0.5*(self.y1[start_ind:end_ind] +
                                   self.y2[start_ind:end_ind]))
            # correction from start to first index
            integral += (self.x[start_ind]-interval[0]) * 0.5 * \
                        (self.y2[start_ind-1] +
                         intermediate_value(self.x[start_ind-1],
                                            self.x[start_ind],
                                            self.y1[start_ind-1],
                                            self.y2[start_ind-1],
                                            interval[0]
                                            ))
            # correction from last index to end
            integral += (interval[1]-self.x[end_ind]) * 0.5 * \
                        (self.y1[end_ind] +
                         intermediate_value(self.x[end_ind], self.x[end_ind+1],
                                            self.y1[end_ind], self.y2[end_ind],
                                            interval[1]
                                            ))
        return integral

    def avrg(self, interval=None):
        """ Computes the average of the piece-wise linear function:
        :math:`a = 1/T int_0^T f(x) dx` where T is the length of the interval.

        :param interval: averaging interval given as a pair of floats, a
                         sequence of pairs for averaging multiple intervals, or
                         None, if None the average over the whole function is
                         computed.
        :type interval: Pair, sequence of pairs, or None.
        :returns: the average a.
        :rtype: float

        """

        if interval is None:
            # no interval given, average over the whole spike train
            return self.integral() / (self.x[-1]-self.x[0])

        # check if interval is as sequence
        assert isinstance(interval, collections.Sequence), \
            "Invalid value for `interval`. None, Sequence or Tuple expected."
        # check if interval is a sequence of intervals
        if not isinstance(interval[0], collections.Sequence):
            # just one interval
            a = self.integral(interval) / (interval[1]-interval[0])
        else:
            # several intervals
            a = 0.0
            int_length = 0.0
            for ival in interval:
                a += self.integral(ival)
                int_length += ival[1] - ival[0]
            a /= int_length
        return a

    def add(self, f):
        """ Adds another PieceWiseLin function to this function.
        Note: only functions defined on the same interval can be summed.

        :param f: :class:`PieceWiseLinFunc` function to be added.
        :rtype: None
        """
        assert self.x[0] == f.x[0], "The functions have different intervals"
        assert self.x[-1] == f.x[-1], "The functions have different intervals"

        # python implementation
        # from python_backend import add_piece_wise_lin_python
        # self.x, self.y1, self.y2 = add_piece_wise_lin_python(
        #     self.x, self.y1, self.y2, f.x, f.y1, f.y2)

        # cython version
        try:
            from cython_add import add_piece_wise_lin_cython as \
                add_piece_wise_lin_impl
        except ImportError:
            print("Warning: add_piece_wise_lin_cython not found. Make sure \
that PySpike is installed by running\n 'python setup.py build_ext --inplace'! \
\n Falling back to slow python backend.")
            # use python backend
            from python_backend import add_piece_wise_lin_python as \
                add_piece_wise_lin_impl

        self.x, self.y1, self.y2 = add_piece_wise_lin_impl(
            self.x, self.y1, self.y2, f.x, f.y1, f.y2)

    def mul_scalar(self, fac):
        """ Multiplies the function with a scalar value

        :param fac: Value to multiply
        :type fac: double
        :rtype: None
        """
        self.y1 *= fac
        self.y2 *= fac


##############################################################
# DiscreteFunction
##############################################################
class DiscreteFunction(object):
    """ A class representing values defined on a discrete set of points.
    """

    def __init__(self, x, y, multiplicity):
        """ Constructs the discrete function.

        :param x: array of length N defining the points at which the values are
        defined.
        :param y: array of length N degining the values at the points x.
        :param multiplicity: array of length N defining the multiplicity of the
        values.
        """
        # convert parameters to arrays, also ensures copying
        self.x = np.array(x)
        self.y = np.array(y)
        self.mp = np.array(multiplicity)

    def copy(self):
        """ Returns a copy of itself

        :rtype: :class:`DiscreteFunction`
        """
        return DiscreteFunction(self.x, self.y, self.mp)

    def almost_equal(self, other, decimal=14):
        """ Checks if the function is equal to another function up to `decimal`
        precision.

        :param other: another :class:`DiscreteFunction`
        :returns: True if the two functions are equal up to `decimal` decimals,
                  False otherwise
        :rtype: bool
        """
        eps = 10.0**(-decimal)
        return np.allclose(self.x, other.x, atol=eps, rtol=0.0) and \
            np.allclose(self.y, other.y, atol=eps, rtol=0.0) and \
            np.allclose(self.mp, other.mp, atol=eps, rtol=0.0)

    def get_plottable_data(self, averaging_window_size=0):
        """ Returns two arrays containing x- and y-coordinates for plotting
        the interval sequence. The optional parameter `averaging_window_size`
        determines the size of an averaging window to smoothen the profile. If
        this value is 0, no averaging is performed.

        :param averaging_window_size: size of the averaging window, default=0.
        :returns: (x_plot, y_plot) containing plottable data
        :rtype: pair of np.array

        Example::

            x, y = f.get_plottable_data()
            plt.plot(x, y, '-o', label="Discrete function")
        """

        if averaging_window_size > 0:
            # for the averaged profile we have to take the multiplicity into
            # account. values with higher multiplicity should be consider as if
            # they appeared several times. Hence we can not know how many
            # entries we have to consider to the left and right. Rather, we
            # will iterate until some wanted multiplicity is reached.

            # the first value in self.mp contains the number of averaged
            # profiles without any possible extra multiplicities
            # (by implementation)
            expected_mp = (averaging_window_size+1) * int(self.mp[0])
            y_plot = np.zeros_like(self.y)
            # compute the values in a loop, could be done in cython if required
            for i in xrange(len(y_plot)):

                if self.mp[i] >= expected_mp:
                    # the current value contains already all the wanted
                    # multiplicity
                    y_plot[i] = self.y[i]/self.mp[i]
                    continue

                # first look to the right
                y = self.y[i]
                mp_r = self.mp[i]
                j = i+1
                while j < len(y_plot):
                    if mp_r+self.mp[j] < expected_mp:
                        # if we still dont reach the required multiplicity
                        # we take the whole value
                        y += self.y[j]
                        mp_r += self.mp[j]
                    else:
                        # otherwise, just some fraction
                        y += self.y[j] * (expected_mp - mp_r)/self.mp[j]
                        mp_r += (expected_mp - mp_r)
                        break
                    j += 1

                # same story to the left
                mp_l = self.mp[i]
                j = i-1
                while j >= 0:
                    if mp_l+self.mp[j] < expected_mp:
                        y += self.y[j]
                        mp_l += self.mp[j]
                    else:
                        y += self.y[j] * (expected_mp - mp_l)/self.mp[j]
                        mp_l += (expected_mp - mp_l)
                        break
                    j -= 1
                y_plot[i] = y/(mp_l+mp_r-self.mp[i])
            return 1.0*self.x, y_plot

        else:  # k = 0

            return 1.0*self.x, 1.0*self.y/self.mp

    def integral(self, interval=None):
        """ Returns the integral over the given interval. For the discrete
        function, this amounts to the sum over all values divided by the total
        multiplicity.

        :param interval: integration interval given as a pair of floats, or a
                         sequence of pairs in case of multiple intervals, if
                         None the integral over the whole function is computed.
        :type interval: Pair, sequence of pairs, or None.
        :returns: the integral
        :rtype: float
        """

        def get_indices(ival):
            """ Retuns the indeces surrounding the given interval"""
            start_ind = np.searchsorted(self.x, ival[0], side='right')
            end_ind = np.searchsorted(self.x, ival[1], side='left')
            assert start_ind > 0 and end_ind < len(self.x), \
                "Invalid averaging interval"
            return start_ind, end_ind

        if interval is None:
            # no interval given, integrate over the whole spike train
            # don't count the first value, which is zero by definition
            return 1.0 * np.sum(self.y[1:-1]) / np.sum(self.mp[1:-1])

        # check if interval is as sequence
        assert isinstance(interval, collections.Sequence), \
            "Invalid value for `interval`. None, Sequence or Tuple expected."
        # check if interval is a sequence of intervals
        if not isinstance(interval[0], collections.Sequence):
            # find the indices corresponding to the interval
            start_ind, end_ind = get_indices(interval)
            return (np.sum(self.y[start_ind:end_ind]) /
                    np.sum(self.mp[start_ind:end_ind]))
        else:
            value = 0.0
            multiplicity = 0.0
            for ival in interval:
                # find the indices corresponding to the interval
                start_ind, end_ind = get_indices(ival)
                value += np.sum(self.y[start_ind:end_ind])
                multiplicity += np.sum(self.mp[start_ind:end_ind])
        return value/multiplicity

    def avrg(self, interval=None):
        """ Computes the average of the interval sequence:
        :math:`a = 1/N sum f_n ` where N is the number of intervals.

        :param interval: averaging interval given as a pair of floats, a
                         sequence of pairs for averaging multiple intervals, or
                         None, if None the average over the whole function is
                         computed.
        :type interval: Pair, sequence of pairs, or None.
        :returns: the average a.
        :rtype: float
        """
        return self.integral(interval)

    def add(self, f):
        """ Adds another `DiscreteFunction` function to this function.
        Note: only functions defined on the same interval can be summed.

        :param f: :class:`DiscreteFunction` function to be added.
        :rtype: None
        """
        assert self.x[0] == f.x[0], "The functions have different intervals"
        assert self.x[-1] == f.x[-1], "The functions have different intervals"

        # cython version
        try:
            from cython_add import add_discrete_function_cython as \
                add_discrete_function_impl
        except ImportError:
            print("Warning: add_discrete_function_cython not found. Make \
sure that PySpike is installed by running\n\
'python setup.py build_ext --inplace'! \
\n Falling back to slow python backend.")
            # use python backend
            from python_backend import add_discrete_function_python as \
                add_discrete_function_impl

        self.x, self.y, self.mp = \
            add_discrete_function_impl(self.x, self.y, self.mp,
                                       f.x, f.y, f.mp)

    def mul_scalar(self, fac):
        """ Multiplies the function with a scalar value

        :param fac: Value to multiply
        :type fac: double
        :rtype: None
        """
        self.y *= fac


def average_profile(profiles):
    """ Computes the average profile from the given ISI- or SPIKE-profiles.

    :param profiles: list of :class:`PieceWiseConstFunc` or
                     :class:`PieceWiseLinFunc` representing ISI- or
                     SPIKE-profiles to be averaged.
    :returns: the averages profile :math:`<S_{isi}>` or :math:`<S_{spike}>`.
    :rtype: :class:`PieceWiseConstFunc` or :class:`PieceWiseLinFunc`
    """
    assert len(profiles) > 1

    avrg_profile = profiles[0].copy()
    for i in xrange(1, len(profiles)):
        avrg_profile.add(profiles[i])
    avrg_profile.mul_scalar(1.0/len(profiles))  # normalize

    return avrg_profile