summaryrefslogtreecommitdiff
path: root/src/Witness_complex/example/witness_complex_cube.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/Witness_complex/example/witness_complex_cube.cpp')
-rw-r--r--src/Witness_complex/example/witness_complex_cube.cpp541
1 files changed, 541 insertions, 0 deletions
diff --git a/src/Witness_complex/example/witness_complex_cube.cpp b/src/Witness_complex/example/witness_complex_cube.cpp
new file mode 100644
index 00000000..7545f156
--- /dev/null
+++ b/src/Witness_complex/example/witness_complex_cube.cpp
@@ -0,0 +1,541 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Siargey Kachanovich
+ *
+ * Copyright (C) 2015 INRIA Sophia Antipolis-Méditerranée (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <iostream>
+#include <fstream>
+#include <ctime>
+#include <utility>
+#include <algorithm>
+#include <set>
+#include <iterator>
+#include <chrono>
+
+#include <sys/types.h>
+#include <sys/stat.h>
+//#include <stdlib.h>
+
+//#include "gudhi/graph_simplicial_complex.h"
+#include "gudhi/Witness_complex.h"
+#include "gudhi/reader_utils.h"
+#include "Torus_distance.h"
+
+#include <CGAL/Cartesian_d.h>
+#include <CGAL/Search_traits.h>
+#include <CGAL/Search_traits_adapter.h>
+#include <CGAL/property_map.h>
+#include <CGAL/Epick_d.h>
+#include <CGAL/Orthogonal_k_neighbor_search.h>
+#include <CGAL/Kd_tree.h>
+#include <CGAL/Euclidean_distance.h>
+#include <CGAL/Kernel_d/Sphere_d.h>
+
+#include <CGAL/Kernel_d/Vector_d.h>
+#include <CGAL/point_generators_d.h>
+#include <CGAL/constructions_d.h>
+#include <CGAL/Fuzzy_sphere.h>
+#include <CGAL/Random.h>
+#include <CGAL/Delaunay_triangulation.h>
+
+
+#include <boost/tuple/tuple.hpp>
+#include <boost/iterator/zip_iterator.hpp>
+#include <boost/iterator/counting_iterator.hpp>
+#include <boost/range/iterator_range.hpp>
+
+using namespace Gudhi;
+//using namespace boost::filesystem;
+
+typedef CGAL::Epick_d<CGAL::Dynamic_dimension_tag> K;
+typedef K::Point_d Point_d;
+//typedef CGAL::Cartesian_d<double> K;
+//typedef CGAL::Point_d<K> Point_d;
+typedef K::FT FT;
+typedef CGAL::Search_traits<
+ FT, Point_d,
+ typename K::Cartesian_const_iterator_d,
+ typename K::Construct_cartesian_const_iterator_d> Traits_base;
+typedef CGAL::Euclidean_distance<Traits_base> Euclidean_distance;
+
+
+typedef std::vector< Vertex_handle > typeVectorVertex;
+
+//typedef std::pair<typeVectorVertex, Filtration_value> typeSimplex;
+//typedef std::pair< Simplex_tree<>::Simplex_handle, bool > typePairSimplexBool;
+
+typedef CGAL::Search_traits_adapter<
+ std::ptrdiff_t, Point_d*, Traits_base> STraits;
+//typedef K TreeTraits;
+//typedef CGAL::Distance_adapter<std::ptrdiff_t,Point_d*,Euclidean_distance > Euclidean_adapter;
+//typedef CGAL::Kd_tree<STraits> Kd_tree;
+typedef CGAL::Orthogonal_k_neighbor_search<STraits, CGAL::Distance_adapter<std::ptrdiff_t,Point_d*,Euclidean_distance>> K_neighbor_search;
+typedef K_neighbor_search::Tree Tree;
+typedef K_neighbor_search::Distance Distance;
+typedef K_neighbor_search::iterator KNS_iterator;
+typedef K_neighbor_search::iterator KNS_range;
+typedef boost::container::flat_map<int, int> Point_etiquette_map;
+typedef CGAL::Kd_tree<STraits> Tree2;
+
+typedef CGAL::Fuzzy_sphere<STraits> Fuzzy_sphere;
+
+typedef std::vector<Point_d> Point_Vector;
+
+//typedef K::Equal_d Equal_d;
+//typedef CGAL::Random_points_in_cube_d<CGAL::Point_d<CGAL::Cartesian_d<FT> > > Random_cube_iterator;
+typedef CGAL::Random_points_in_cube_d<Point_d> Random_cube_iterator;
+typedef CGAL::Random_points_in_ball_d<Point_d> Random_point_iterator;
+
+typedef CGAL::Delaunay_triangulation<K> Delaunay_triangulation;
+typedef Delaunay_triangulation::Facet Facet;
+typedef CGAL::Sphere_d<K> Sphere_d;
+
+bool toric=false;
+
+
+/**
+ * \brief Customized version of read_points
+ * which takes into account a possible nbP first line
+ *
+ */
+inline void
+read_points_cust ( std::string file_name , Point_Vector & points)
+{
+ std::ifstream in_file (file_name.c_str(),std::ios::in);
+ if(!in_file.is_open())
+ {
+ std::cerr << "Unable to open file " << file_name << std::endl;
+ return;
+ }
+ std::string line;
+ double x;
+ while( getline ( in_file , line ) )
+ {
+ std::vector< double > point;
+ std::istringstream iss( line );
+ while(iss >> x) { point.push_back(x); }
+ Point_d p(point.begin(), point.end());
+ if (point.size() != 1)
+ points.push_back(p);
+ }
+ in_file.close();
+}
+
+void generate_points_grid(Point_Vector& W, int width, int D)
+{
+ int nb_points = 1;
+ for (int i = 0; i < D; ++i)
+ nb_points *= width;
+ for (int i = 0; i < nb_points; ++i)
+ {
+ std::vector<double> point;
+ int cell_i = i;
+ for (int l = 0; l < D; ++l)
+ {
+ point.push_back(0.01*(cell_i%width));
+ cell_i /= width;
+ }
+ W.push_back(point);
+ }
+}
+
+void generate_points_random_box(Point_Vector& W, int nbP, int dim)
+{
+ /*
+ Random_cube_iterator rp(dim, 1);
+ for (int i = 0; i < nbP; i++)
+ {
+ std::vector<double> point;
+ for (auto it = rp->cartesian_begin(); it != rp->cartesian_end(); ++it)
+ point.push_back(*it);
+ W.push_back(Point_d(point));
+ rp++;
+ }
+ */
+ Random_cube_iterator rp(dim, 1.0);
+ for (int i = 0; i < nbP; i++)
+ {
+ W.push_back(*rp++);
+ }
+}
+
+
+void write_wl( std::string file_name, std::vector< std::vector <int> > & WL)
+{
+ std::ofstream ofs (file_name, std::ofstream::out);
+ for (auto w : WL)
+ {
+ for (auto l: w)
+ ofs << l << " ";
+ ofs << "\n";
+ }
+ ofs.close();
+}
+
+
+void write_points( std::string file_name, std::vector< Point_d > & points)
+{
+ std::ofstream ofs (file_name, std::ofstream::out);
+ for (auto w : points)
+ {
+ for (auto it = w.cartesian_begin(); it != w.cartesian_end(); ++it)
+ ofs << *it << " ";
+ ofs << "\n";
+ }
+ ofs.close();
+}
+
+void write_edges(std::string file_name, Witness_complex<>& witness_complex, Point_Vector& landmarks)
+{
+ std::ofstream ofs (file_name, std::ofstream::out);
+ for (auto u: witness_complex.complex_vertex_range())
+ for (auto v: witness_complex.complex_vertex_range())
+ {
+ typeVectorVertex edge = {u,v};
+ if (u < v && witness_complex.find(edge) != witness_complex.null_simplex())
+ {
+ for (auto it = landmarks[u].cartesian_begin(); it != landmarks[u].cartesian_end(); ++it)
+ ofs << *it << " ";
+ ofs << "\n";
+ for (auto it = landmarks[v].cartesian_begin(); it != landmarks[v].cartesian_end(); ++it)
+ ofs << *it << " ";
+ ofs << "\n\n\n";
+ }
+ }
+ ofs.close();
+}
+
+
+void insert_delaunay_landmark_with_copies(Point_Vector& W, int chosen_landmark, std::vector<int>& landmarks_ind, Delaunay_triangulation& delaunay, int& landmark_count)
+{
+ delaunay.insert(W[chosen_landmark]);
+ landmarks_ind.push_back(chosen_landmark);
+ landmark_count++;
+}
+
+bool is_violating_protection(Point_d& p, Delaunay_triangulation& t, int D, FT delta)
+{
+ Euclidean_distance ed;
+ Delaunay_triangulation::Vertex_handle v;
+ Delaunay_triangulation::Face f(t.current_dimension());
+ Delaunay_triangulation::Facet ft;
+ Delaunay_triangulation::Full_cell_handle c;
+ Delaunay_triangulation::Locate_type lt;
+ c = t.locate(p, lt, f, ft, v);
+ for (auto fc_it = t.full_cells_begin(); fc_it != t.full_cells_end(); ++fc_it)
+ if (!t.is_infinite(fc_it))
+ {
+ std::vector<Point_d> vertices;
+ for (auto v_it = fc_it->vertices_begin(); v_it != fc_it->vertices_end(); ++v_it)
+ vertices.push_back((*v_it)->point());
+ Sphere_d cs(D, vertices.begin(), vertices.end());
+ Point_d center_cs = cs.center();
+ FT r = sqrt(ed.transformed_distance(center_cs, fc_it->vertex(1)->point()));
+ FT dist2 = ed.transformed_distance(center_cs, p);
+ //if the new point is inside the protection ball of a non conflicting simplex
+ if (dist2 >= r*r && dist2 <= (r+delta)*(r+delta))
+ return true;
+ }
+ return false;
+}
+
+bool triangulation_is_protected(Delaunay_triangulation& t, FT delta)
+{
+ Euclidean_distance ed;
+ int D = t.current_dimension();
+ for (auto fc_it = t.full_cells_begin(); fc_it != t.full_cells_end(); ++fc_it)
+ if (!t.is_infinite(fc_it))
+ for (auto v_it = t.vertices_begin(); v_it != t.vertices_end(); ++v_it)
+ {
+ //check if vertex belongs to the face
+ bool belongs = false;
+ for (auto fc_v_it = fc_it->vertices_begin(); fc_v_it != fc_it->vertices_end(); ++fc_v_it)
+ if (v_it == *fc_v_it)
+ {
+ belongs = true;
+ break;
+ }
+ if (!belongs)
+ {
+ std::vector<Point_d> vertices;
+ for (auto fc_v_it = fc_it->vertices_begin(); fc_v_it != fc_it->vertices_end(); ++fc_v_it)
+ vertices.push_back((*fc_v_it)->point());
+ Sphere_d cs(D, vertices.begin(), vertices.end());
+ Point_d center_cs = cs.center();
+ FT r = sqrt(ed.transformed_distance(center_cs, fc_it->vertex(1)->point()));
+ FT dist2 = ed.transformed_distance(center_cs, v_it->point());
+ //if the new point is inside the protection ball of a non conflicting simplex
+ if (dist2 <= (r+delta)*(r+delta))
+ return false;
+ }
+ }
+ return true;
+}
+
+void fill_landmarks(Point_Vector& W, Point_Vector& landmarks, std::vector<int>& landmarks_ind)
+{
+ for (int j = 0; j < landmarks_ind.size(); ++j)
+ landmarks.push_back(W[landmarks_ind[j]][l]);
+}
+
+void landmark_choice_by_delaunay(Point_Vector& W, int nbP, int nbL, Point_Vector& landmarks, std::vector<int>& landmarks_ind, FT delta)
+{
+ int D = W[0].size();
+ Delaunay_triangulation t(D);
+ CGAL::Random rand;
+ int chosen_landmark;
+ int landmark_count = 0;
+ for (int i = 0; i <= D+1; ++i)
+ {
+ do chosen_landmark = rand.get_int(0,nbP);
+ while (std::count(landmarks_ind.begin(),landmarks_ind.end(),chosen_landmark)!=0);
+ insert_delaunay_landmark_with_copies(W, chosen_landmark, landmarks_ind, t, landmark_count);
+ }
+ while (landmark_count < nbL)
+ {
+ do chosen_landmark = rand.get_int(0,nbP);
+ while (std::count(landmarks_ind.begin(),landmarks_ind.end(),chosen_landmark)!=0);
+ // If no conflicts then insert in every copy of T^3
+ if (!is_violating_protection(W[chosen_landmark], t, D, delta))
+ insert_delaunay_landmark_with_copies(W, chosen_landmark, landmarks_ind, t, landmark_count);
+ }
+}
+
+
+void landmark_choice_protected_delaunay(Point_Vector& W, int nbP, Point_Vector& landmarks, std::vector<int>& landmarks_ind, FT delta)
+{
+ int D = W[0].size();
+ Torus_distance td;
+ Euclidean_distance ed;
+ Delaunay_triangulation t(D);
+ CGAL::Random rand;
+ int landmark_count = 0;
+ std::list<int> index_list;
+ // shuffle the list of indexes (via a vector)
+ {
+ std::vector<int> temp_vector;
+ for (int i = 0; i < nbP; ++i)
+ temp_vector.push_back(i);
+ unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
+ std::shuffle(temp_vector.begin(), temp_vector.end(), std::default_random_engine(seed));
+ for (std::vector<int>::iterator it = temp_vector.begin(); it != temp_vector.end(); ++it)
+ index_list.push_front(*it);
+ }
+ // add the first D+1 vertices to form one non-empty cell
+ for (int i = 0; i <= D+1; ++i)
+ {
+ insert_delaunay_landmark_with_copies(W, index_list.front(), landmarks_ind, t, landmark_count);
+ index_list.pop_front();
+ }
+ // add other vertices if they don't violate protection
+ std::list<int>::iterator list_it = index_list.begin();
+ while (list_it != index_list.end())
+ if (!is_violating_protection(W[*list_it], t, D, delta))
+ {
+ // If no conflicts then insert in every copy of T^3
+ insert_delaunay_landmark_with_copies(W, *list_it, landmarks_ind, t, landmark_count);
+ index_list.erase(list_it);
+ list_it = index_list.begin();
+ }
+ else
+ list_it++;
+ fill_landmark_copies(W, landmarks, landmarks_ind);
+}
+
+
+int landmark_perturbation(Point_Vector &W, int nbL, Point_Vector& landmarks, std::vector<int>& landmarks_ind)
+{
+ //******************** Preface: origin point
+ int D = W[0].size();
+ std::vector<FT> orig_vector;
+ for (int i=0; i<D; i++)
+ orig_vector.push_back(0);
+ Point_d origin(orig_vector);
+
+ //******************** Constructing a WL matrix
+ int nbP = W.size();
+ Euclidean_distance ed;
+ FT lambda = ed.transformed_distance(landmarks[0],landmarks[1]);
+ std::vector<Point_d> landmarks_ext;
+ int nb_cells = 1;
+ for (int i = 0; i < D; ++i)
+ nb_cells *= 3;
+ for (int i = 0; i < nb_cells; ++i)
+ for (int k = 0; k < nbL; ++k)
+ {
+ std::vector<double> point;
+ int cell_i = i;
+ for (int l = 0; l < D; ++l)
+ {
+ point.push_back(landmarks[k][l] + 2.0*((cell_i%3)-1.0));
+ cell_i /= 3;
+ }
+ landmarks_ext.push_back(point);
+ }
+ write_points("landmarks/initial_landmarks",landmarks_ext);
+ STraits traits(&(landmarks_ext[0]));
+ std::vector< std::vector <int> > WL(nbP);
+
+ //********************** Neighbor search in a Kd tree
+ Tree L(boost::counting_iterator<std::ptrdiff_t>(0),
+ boost::counting_iterator<std::ptrdiff_t>(nb_cells*nbL),
+ typename Tree::Splitter(),
+ traits);
+ std::cout << "Enter (D+1) nearest landmarks\n";
+ for (int i = 0; i < nbP; i++)
+ {
+ Point_d& w = W[i];
+ ////Search D+1 nearest neighbours from the tree of landmarks L
+ K_neighbor_search search(L, w, D+1, FT(0), true,
+ CGAL::Distance_adapter<std::ptrdiff_t,Point_d*,Euclidean_distance>(&(landmarks_ext[0])) );
+ for(K_neighbor_search::iterator it = search.begin(); it != search.end(); ++it)
+ {
+ if (std::find(WL[i].begin(), WL[i].end(), (it->first)%nbL) == WL[i].end())
+ WL[i].push_back((it->first)%nbL);
+ }
+ if (i == landmarks_ind[WL[i][0]])
+ {
+ FT dist = ed.transformed_distance(W[i], landmarks[WL[i][1]]);
+ if (dist < lambda)
+ lambda = dist;
+ }
+ }
+ std::string out_file = "wl_result";
+ write_wl(out_file,WL);
+
+ //******************** Constructng a witness complex
+ std::cout << "Entered witness complex construction\n";
+ Witness_complex<> witnessComplex;
+ witnessComplex.setNbL(nbL);
+ witnessComplex.witness_complex(WL);
+
+ //******************** Making a set of bad link landmarks
+ std::cout << "Entered bad links\n";
+ std::set< int > perturbL;
+ int count_badlinks = 0;
+ //std::cout << "Bad links around ";
+ std::vector< int > count_bad(D);
+ std::vector< int > count_good(D);
+ for (auto u: witnessComplex.complex_vertex_range())
+ {
+ if (!witnessComplex.has_good_link(u, count_bad, count_good))
+ {
+ count_badlinks++;
+ Point_d& l = landmarks[u];
+ Fuzzy_sphere fs(l, sqrt(lambda)*3, 0, traits);
+ std::vector<int> curr_perturb;
+ L.search(std::insert_iterator<std::vector<int>>(curr_perturb,curr_perturb.begin()),fs);
+ for (int i: curr_perturb)
+ perturbL.insert(i%nbL);
+ }
+ }
+ for (unsigned int i = 0; i != count_good.size(); i++)
+ if (count_good[i] != 0)
+ std::cout << "count_good[" << i << "] = " << count_good[i] << std::endl;
+ for (unsigned int i = 0; i != count_bad.size(); i++)
+ if (count_bad[i] != 0)
+ std::cout << "count_bad[" << i << "] = " << count_bad[i] << std::endl;
+ std::cout << "\nBad links total: " << count_badlinks << " Points to perturb: " << perturbL.size() << std::endl;
+
+ //*********************** Perturb bad link landmarks
+ for (auto u: perturbL)
+ {
+ Random_point_iterator rp(D,sqrt(lambda)/8);
+ std::vector<FT> point;
+ for (int i = 0; i < D; i++)
+ {
+ while (K().squared_distance_d_object()(*rp,origin) < lambda/256)
+ rp++;
+ FT coord = landmarks[u][i] + (*rp)[i];
+ if (coord > 1)
+ point.push_back(coord-1);
+ else if (coord < -1)
+ point.push_back(coord+1);
+ else
+ point.push_back(coord);
+ }
+ landmarks[u] = Point_d(point);
+ }
+ std::cout << "lambda=" << lambda << std::endl;
+ char buffer[100];
+ int i = sprintf(buffer,"stree_result.txt");
+
+ if (i >= 0)
+ {
+ std::string out_file = (std::string)buffer;
+ std::ofstream ofs (out_file, std::ofstream::out);
+ witnessComplex.st_to_file(ofs);
+ ofs.close();
+ }
+ write_edges("landmarks/edges", witnessComplex, landmarks);
+ return count_badlinks;
+}
+
+
+int main (int argc, char * const argv[])
+{
+ if (argc != 5)
+ {
+ std::cerr << "Usage: " << argv[0]
+ << " nbP nbL dim delta\n";
+ return 0;
+ }
+ int nbP = atoi(argv[1]);
+ int nbL = atoi(argv[2]);
+ int dim = atoi(argv[3]);
+ FT delta = atof(argv[4]);
+
+ std::cout << "Let the carnage begin!\n";
+ Point_Vector point_vector;
+ generate_points_random_box(point_vector, nbP, dim);
+ Point_Vector L;
+ std::vector<int> chosen_landmarks;
+ bool ok=false;
+ while (!ok)
+ {
+ ok = true;
+ L = {};
+ chosen_landmarks = {};
+ //landmark_choice_by_delaunay(point_vector, nbP, nbL, L, chosen_landmarks, delta);
+ landmark_choice_protected_delaunay(point_vector, nbP, L, chosen_landmarks, delta);
+ nbL = chosen_landmarks.size();
+ std::cout << "Number of landmarks is " << nbL << std::endl;
+ //int width = (int)pow(nbL, 1.0/dim); landmark_choice_bcc(point_vector, nbP, width, L, chosen_landmarks);
+ for (auto i: chosen_landmarks)
+ {
+ ok = ok && (std::count(chosen_landmarks.begin(),chosen_landmarks.end(),i) == 1);
+ if (!ok) break;
+ }
+
+ }
+ int bl = nbL, curr_min = bl;
+ write_points("landmarks/initial_pointset",point_vector);
+ //write_points("landmarks/initial_landmarks",L);
+ //for (int i = 0; i < 1; i++)
+ for (int i = 0; bl > 0; i++)
+ {
+ std::cout << "========== Start iteration " << i << "== curr_min(" << curr_min << ")========\n";
+ bl=landmark_perturbation(point_vector, nbL, L, chosen_landmarks);
+ if (bl < curr_min)
+ curr_min=bl;
+ write_points("landmarks/landmarks0",L);
+ }
+
+}