summaryrefslogtreecommitdiff
path: root/src/Collapse/include/gudhi/FlagComplexSpMatrix.h
blob: ac02a46fa421ff7269ae8d32323a35b75d37099f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Siddharth Pritam
 *
 *    Copyright (C) 2018 INRIA Sophia Antipolis (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.

*/
#pragma once

#include <gudhi/Rips_edge_list.h>
#include <boost/functional/hash.hpp>
// #include <boost/graph/adjacency_list.hpp>

#include <iostream>
#include <utility>
#include <vector>
#include <queue>
#include <unordered_map>
#include <tuple>
#include <list>
#include <algorithm>
#include <chrono>

#include <ctime>
#include <fstream>

#include <Eigen/Sparse>

typedef std::size_t Vertex;
using Edge = std::pair<Vertex, Vertex>;  // This is an ordered pair, An edge is stored with convention of the first
                                         // element being the smaller i.e {2,3} not {3,2}. However this is at the level
                                         // of row indices on actual vertex lables
using EdgeFilt = std::pair<Edge, double>;
using edge_list = std::vector<Edge>;

using MapVertexToIndex = std::unordered_map<Vertex, std::size_t>;
using Map = std::unordered_map<Vertex, Vertex>;

using sparseRowMatrix = Eigen::SparseMatrix<double, Eigen::RowMajor>;
using rowInnerIterator = sparseRowMatrix::InnerIterator;

using doubleVector = std::vector<double>;
using vertexVector = std::vector<Vertex>;
using boolVector = std::vector<bool>;

using doubleQueue = std::queue<double>;

using EdgeFiltQueue = std::queue<EdgeFilt>;
using EdgeFiltVector = std::vector<EdgeFilt>;

typedef std::vector<std::tuple<double, Vertex, Vertex>> Filtered_sorted_edge_list;
typedef std::unordered_map<Edge, bool, boost::hash<Edge>> u_edge_map;
typedef std::unordered_map<Edge, std::size_t, boost::hash<Edge>> u_edge_to_idx_map;

//!  Class SparseMsMatrix
/*!
  The class for storing the Vertices v/s MaxSimplices Sparse Matrix and performing collapses operations using the N^2()
  Algorithm.
*/
class FlagComplexSpMatrix {
 private:
  std::unordered_map<int, Vertex> rowToVertex;

  // Vertices strored as an unordered_set
  std::unordered_set<Vertex> vertices;
  //! Stores the 1-simplices(edges) of the original Simplicial Complex.
  edge_list oneSimplices;

  // Unordered set of  removed edges. (to enforce removal from the matrix)
  std::unordered_set<Edge, boost::hash<Edge>> u_set_removed_redges;

  // Unordered set of  dominated edges. (to inforce removal from the matrix)
  std::unordered_set<Edge, boost::hash<Edge>> u_set_dominated_redges;

  // Map from egde to its index
  u_edge_to_idx_map edge_to_index_map;
  // Boolean vector to indicate if the index is critical or not.
  boolVector critical_edge_indicator;  // critical indicator

  // Boolean vector to indicate if the index is critical or not.
  boolVector dominated_edge_indicator;  // domination indicator

  //! Stores the Map between vertices<B>rowToVertex  and row indices <B>rowToVertex -> row-index</B>.
  /*!
    \code
    MapVertexToIndex = std::unordered_map<Vertex,int>
    \endcode
    So, if the original simplex tree had vertices 0,1,4,5 <br>
    <B>rowToVertex</B> would store : <br>
    \verbatim
    Values =  | 0 | 1 | 4 | 5 |
    Indices =   0   1   2   3
    \endverbatim
    And <B>vertexToRow</B> would be a map like the following : <br>
    \verbatim
    0 -> 0
    1 -> 1
    4 -> 2
    5 -> 3
    \endverbatim
  */
  MapVertexToIndex vertexToRow;

  //! Stores the number of vertices in the original Simplicial Complex.
  /*!
    This stores the count of vertices (which is also the number of rows in the Matrix).
  */
  std::size_t rows;

  std::size_t numOneSimplices;

  std::size_t numDomEdge;

  //! Stores the Sparse matrix of double values representing the Original Simplicial Complex.
  /*!
    \code
    sparseRowMatrix   = Eigen::SparseMatrix<double, Eigen::RowMajor> ;
    \endcode
    ;
      */

  sparseRowMatrix* sparse_colpsd_adj_Matrix;  // Stores the collapsed sparse matrix representaion.
  sparseRowMatrix sparseRowAdjMatrix;  // This is row-major version of the same sparse-matrix, to facilitate easy access
                                       // to elements when traversing the matrix row-wise.

  //! Stores <I>true</I> for dominated rows and  <I>false</I> for undominated rows.
  /*!
    Initialised to a vector of length equal to the value of the variable <B>rows</B> with all <I>false</I> values.
    Subsequent removal of dominated vertices is reflected by concerned entries changing to <I>true</I> in this vector.
  */
  boolVector vertDomnIndicator;  //(domination indicator)

  boolVector contractionIndicator;  //(contraction indicator)

  //! Stores the indices of the rows to-be checked for domination in the current iteration.
  /*!
    Initialised with all rows for the first iteration.
    Subsequently once a dominated row is found, its non-dominated neighbhour indices are inserted.
  */
  // doubleQueue rowIterator;

  doubleQueue rowIterator;

  // Queue of filtered edges, for edge-collapse, the indices of the edges are the row-indices.
  EdgeFiltQueue filteredEgdeIter;

  // Vector of filtered edges, for edge-collapse, the indices of the edges are the row-indices.
  EdgeFiltVector fEgdeVector;

  // List of non-dominated edges,  the indices of the edges are the vertex lables!!.
  Filtered_sorted_edge_list criticalCoreEdges;
  // Stores the indices from the sorted filtered edge vector.
  // std::set<std::size_t> recurCriticalCoreIndcs;

  //! Stores <I>true</I> if the current row is inserted in the queue <B>rowIterator<B> otherwise its value is
  //! <I>false<I>.
  /*!
    Initialised to a boolean vector of length equal to the value of the variable <B>rows</B> with all <I>true</I>
    values. Subsequent removal/addition of a row from <B>rowIterator<B> is reflected by concerned entries changing to
    <I>false</I>/<I>true</I> in this vector.
  */
  boolVector rowInsertIndicator;  //(current iteration row insertion indicator)

  //! Map that stores the Reduction / Collapse of vertices.
  /*!
    \code
    Map = std::unordered_map<Vertex,Vertex>
    \endcode
    This is empty to begin with. As and when collapses are done (let's say from dominated vertex <I>v</I> to dominating
    vertex <I>v'</I>) : <br> <B>ReductionMap</B>[<I>v</I>] = <I>v'</I> is entered into the map. <br> <I>This does not
    store uncollapsed vertices. What it means is that say vertex <I>x</I> was never collapsed onto any other vertex.
    Then, this map <B>WILL NOT</B> have any entry like <I>x</I> -> <I>x</I>. Basically, it will have no entry
    corresponding to vertex <I>x</I> at all. </I>
  */
  Map ReductionMap;

  bool vertexCollapsed;
  bool edgeCollapsed;
  // Variable to indicate if filtered-edge-collapse has to be performed.
  int expansion_limit;

  void init() {
    rowToVertex.clear();
    vertexToRow.clear();
    oneSimplices.clear();
    ReductionMap.clear();

    vertDomnIndicator.clear();
    rowInsertIndicator.clear();
    rowIterator.push(0);
    rowIterator.pop();

    filteredEgdeIter.push({{0, 0}, 0});
    filteredEgdeIter.pop();
    fEgdeVector.clear();

    rows = 0;
    numDomEdge = 0;

    numOneSimplices = 0;
    expansion_limit = 2;

    vertexCollapsed = false;
    edgeCollapsed = false;
  }

  //!	Function for computing the sparse-matrix corresponding to the core of the complex. It also prepares the working
  //!list filteredEgdeIter for edge collapses
  void after_vertex_collapse() {
    sparse_colpsd_adj_Matrix = new sparseRowMatrix(rows, rows);  // Just for debugging purpose.
    oneSimplices.clear();
    if (not filteredEgdeIter.empty()) {
      std::cout << "Working list for edge collapses are not empty before the edge-collapse." << std::endl;
    }
    for (std::size_t rw = 0; rw < rows; ++rw) {
      if (not vertDomnIndicator[rw])  // If the current column is not dominated
      {
        auto nbhrs_to_insert = closed_neighbours_row_index(rw);  // returns row indices of the non-dominated vertices.
        for (auto& v : nbhrs_to_insert) {
          sparse_colpsd_adj_Matrix->insert(rw, v) = 1;  // This creates the full matrix
          if (rw < v) {
            oneSimplices.push_back({rowToVertex[rw], rowToVertex[v]});
            filteredEgdeIter.push({{rw, v}, 1});
            // if(rw == v)
            // std::cout << "Pushed the edge {" << rw << ", " << v <<  "} " << std::endl;
          }
        }
      }
    }
    // std::cout << "Total number of non-zero elements before domination check are: " <<
    // sparse_colpsd_adj_Matrix->nonZeros() << std::endl; std::cout << "Total number of edges for domination check are:
    // " << filteredEgdeIter.size() << std::endl;
    // std::cout << *sparse_colpsd_adj_Matrix << std::endl;
    return;
  }

  //! Function to fully compact a particular vertex of the ReductionMap.
  /*!
    It takes as argument the iterator corresponding to a particular vertex pair (key-value) stored in the ReductionMap.
    <br> It then checks if the second element of this particular vertex pair is present as a first element of some other
    key-value pair in the map. If no, then the first element of the vertex pair in consideration is fully compact. If
    yes, then recursively call fully_compact_this_vertex() on the second element of the original pair in consideration
    and assign its resultant image as the image of the first element of the original pair in consideration as well.
  */
  void fully_compact_this_vertex(Map::iterator iter) {
    Map::iterator found = ReductionMap.find(iter->second);
    if (found == ReductionMap.end()) return;

    fully_compact_this_vertex(found);
    iter->second = ReductionMap[iter->second];
  }

  //! Function to fully compact the Reduction Map.
  /*!
    While doing strong collapses, we store only the immediate collapse of a vertex. Which means that in one round,
    vertex <I>x</I> may collapse to vertex <I>y</I>. And in some later round it may be possible that vertex <I>y</I>
    collapses to <I>z</I>. In which case our map stores : <br> <I>x</I> -> <I>y</I> and also <I>y</I> -> <I>z</I>. But
    it really should store : <I>x</I> -> <I>z</I> and <I>y</I> -> <I>z</I>. This function achieves the same. <br> It
    basically calls fully_compact_this_vertex() for each entry in the map.
  */
  void fully_compact() {
    Map::iterator it = ReductionMap.begin();
    while (it != ReductionMap.end()) {
      fully_compact_this_vertex(it);
      it++;
    }
  }

  void sparse_strong_vertex_collapse() {
    complete_vertex_domination_check(
        rowIterator, rowInsertIndicator,
        vertDomnIndicator);  // Complete check for rows in rowIterator, rowInsertIndicator is a list of boolean
                             // indicator if a vertex is already inserted in the working row_queue (rowIterator)
    if (not rowIterator.empty())
      sparse_strong_vertex_collapse();
    else
      return;
  }

  void complete_vertex_domination_check(doubleQueue& iterator, boolVector& insertIndicator, boolVector& domnIndicator) {
    double k;
    doubleVector nonZeroInnerIdcs;
    while (not iterator.empty())  // "iterator" contains list(FIFO) of rows to be considered for domination check
    {
      k = iterator.front();
      iterator.pop();
      insertIndicator[k] = false;
      if (not domnIndicator[k])  // Check if is  already dominated
      {
        nonZeroInnerIdcs = closed_neighbours_row_index(k);
        for (doubleVector::iterator it = nonZeroInnerIdcs.begin(); it != nonZeroInnerIdcs.end(); it++) {
          int checkDom = vertex_domination_check(k, *it);  // "true" for row domination comparison
          if (checkDom == 1)                               // row k is dominated by *it, k <= *it;
          {
            setZero(k, *it);
            break;
          } else if (checkDom == -1)  // row *it is dominated by k, *it <= k;
            setZero(*it, k);
        }
      }
    }
  }

  bool check_edge_domination(Edge e)  // Edge e is the actual edge (u,v). Not the row ids in the matrixs
  {
    auto u = std::get<0>(e);
    auto v = std::get<1>(e);

    auto rw_u = vertexToRow[u];
    auto rw_v = vertexToRow[v];
    auto rw_e = std::make_pair(rw_u, rw_v);
    // std::cout << "The edge {" << u << ", " << v <<  "} is going for domination check." << std::endl;
    auto commonNeighbours = closed_common_neighbours_row_index(rw_e);
    // std::cout << "And its common neighbours are." << std::endl;
    // for (doubleVector::iterator it = commonNeighbours.begin(); it!=commonNeighbours.end(); it++) {
    // std::cout << rowToVertex[*it] << ", " ;
    // }
    // std::cout<< std::endl;
    if (commonNeighbours.size() > 2) {
      if (commonNeighbours.size() == 3)
        return true;
      else
        for (doubleVector::iterator it = commonNeighbours.begin(); it != commonNeighbours.end(); it++) {
          auto rw_c = *it;  // Typecasting
          if (rw_c != rw_u and rw_c != rw_v) {
            auto neighbours_c = closed_neighbours_row_index(rw_c);
            if (std::includes(neighbours_c.begin(), neighbours_c.end(), commonNeighbours.begin(),
                              commonNeighbours.end()))  // If neighbours_c contains the common neighbours.
              return true;
          }
        }
    }
    return false;
  }

  bool check_domination_indicator(Edge e)  // The edge should be sorted by the indices and indices are original
  {
    return dominated_edge_indicator[edge_to_index_map[e]];
  }

  std::set<std::size_t> three_clique_indices(std::size_t crit) {
    std::set<std::size_t> edge_indices;

    EdgeFilt fe = fEgdeVector.at(crit);
    Edge e = std::get<0>(fe);
    Vertex u = std::get<0>(e);
    Vertex v = std::get<1>(e);

    // std::cout << "The  current critical edge to re-check criticality with filt value is : {" << u << "," << v << "};
    // "<< std::get<1>(fe) << std::endl;
    auto rw_u = vertexToRow[u];
    auto rw_v = vertexToRow[v];
    auto rw_critical_edge = std::make_pair(rw_u, rw_v);

    doubleVector commonNeighbours = closed_common_neighbours_row_index(rw_critical_edge);

    if (commonNeighbours.size() > 2) {
      for (doubleVector::iterator it = commonNeighbours.begin(); it != commonNeighbours.end(); it++) {
        auto rw_c = *it;
        if (rw_c != rw_u and rw_c != rw_v) {
          auto e_with_new_nbhr_v = std::minmax(u, rowToVertex[rw_c]);
          auto e_with_new_nbhr_u = std::minmax(v, rowToVertex[rw_c]);
          edge_indices.emplace(edge_to_index_map[e_with_new_nbhr_v]);
          edge_indices.emplace(edge_to_index_map[e_with_new_nbhr_u]);
        }
      }
    }
    return edge_indices;
  }

  void set_edge_critical(std::size_t indx, double filt) {
    // std::cout << "The curent index  with filtration value " << indx << ", " << filt << " is primary critical" <<
    // std::endl;
    std::set<std::size_t> effectedIndcs = three_clique_indices(indx);
    if (effectedIndcs.size() > 0) {
      for (auto idx = indx - 1; idx > 0; idx--) {
        EdgeFilt fec = fEgdeVector.at(idx);
        Edge e = std::get<0>(fec);
        Vertex u = std::get<0>(e);
        Vertex v = std::get<1>(e);
        if (not critical_edge_indicator.at(
                idx)) {  // If idx is not critical so it should be proceses, otherwise it stays in the graph // prev
                         // code : recurCriticalCoreIndcs.find(idx) == recurCriticalCoreIndcs.end()
          if (effectedIndcs.find(idx) != effectedIndcs.end()) {  // If idx is affected
            if (not check_edge_domination(e)) {
              // std::cout << "The curent index is became critical " << idx  << std::endl;
              critical_edge_indicator.at(idx) = true;
              criticalCoreEdges.push_back({filt, u, v});
              std::set<std::size_t> inner_effected_indcs = three_clique_indices(idx);
              for (auto inr_idx = inner_effected_indcs.rbegin(); inr_idx != inner_effected_indcs.rend(); inr_idx++) {
                if (*inr_idx < idx) effectedIndcs.emplace(*inr_idx);
              }
              inner_effected_indcs.clear();
              // std::cout << "The following edge is critical with filt value: {" << std::get<0>(e) << "," <<
              // std::get<1>(e) << "}; " << filt << std::endl;
            } else
              u_set_dominated_redges.emplace(std::minmax(vertexToRow[u], vertexToRow[v]));
          } else  // Idx is not affected hence dominated.
            u_set_dominated_redges.emplace(std::minmax(vertexToRow[u], vertexToRow[v]));
        }
      }
    }
    effectedIndcs.clear();
    u_set_dominated_redges.clear();
  }

  void critical_core_edges() {
    std::size_t totEdges = fEgdeVector.size();

    std::size_t endIdx = 0;

    u_set_removed_redges.clear();
    u_set_dominated_redges.clear();
    critical_edge_indicator.clear();

    while (endIdx < totEdges) {
      EdgeFilt fec = fEgdeVector.at(endIdx);

      insert_new_edges(std::get<0>(std::get<0>(fec)), std::get<1>(std::get<0>(fec)),
                       std::get<1>(fec));  // Inserts the edge in the sparse matrix to update the graph (G_i)

      Edge e = std::get<0>(fec);
      Vertex u = std::get<0>(e);
      Vertex v = std::get<1>(e);
      edge_to_index_map.emplace(std::minmax(u, v), endIdx);
      critical_edge_indicator.push_back(false);
      dominated_edge_indicator.push_back(false);

      if (not check_edge_domination(e)) {
        critical_edge_indicator.at(endIdx) = true;
        dominated_edge_indicator.at(endIdx) = false;
        criticalCoreEdges.push_back({std::get<1>(fec), u, v});
        if (endIdx > 1) set_edge_critical(endIdx, std::get<1>(fec));

      } else
        dominated_edge_indicator.at(endIdx) = true;
      endIdx++;
    }

    std::cout << "The total number of critical edges is: " << criticalCoreEdges.size() << std::endl;
    std::cout << "The total number of non-critical edges is: " << totEdges - criticalCoreEdges.size() << std::endl;
  }

  int vertex_domination_check(double i, double j)  // True for row comparison, false for column comparison
  {
    if (i != j) {
      doubleVector Listi = closed_neighbours_row_index(i);
      doubleVector Listj = closed_neighbours_row_index(j);
      if (Listj.size() <= Listi.size()) {
        if (std::includes(Listi.begin(), Listi.end(), Listj.begin(), Listj.end()))  // Listj is a subset of Listi
          return -1;
      }

      else if (std::includes(Listj.begin(), Listj.end(), Listi.begin(), Listi.end()))  // Listi is a subset of Listj
        return 1;
    }
    return 0;
  }

  doubleVector closed_neighbours_row_index(double indx)  // Returns list of non-zero columns of the particular indx.
  {
    doubleVector nonZeroIndices;
    Vertex u = indx;
    Vertex v;
    // std::cout << "The neighbours of the vertex: " << rowToVertex[u] << " are. " << std::endl;
    if (not vertDomnIndicator[indx]) {
      for (rowInnerIterator it(sparseRowAdjMatrix, indx); it; ++it) {  // Iterate over the non-zero columns
        v = it.index();
        if (not vertDomnIndicator[v] and u_set_removed_redges.find(std::minmax(u, v)) == u_set_removed_redges.end() and
            u_set_dominated_redges.find(std::minmax(u, v)) ==
                u_set_dominated_redges
                    .end()) {  // If the vertex v is not dominated and the edge {u,v} is still in the matrix
          nonZeroIndices.push_back(it.index());  // inner index, here it is equal to it.columns()
                                                 // std::cout << rowToVertex[it.index()] << ", " ;
        }
      }
      // std::cout << std::endl;
    }
    return nonZeroIndices;
  }

  doubleVector closed_common_neighbours_row_index(Edge e)  // Returns the list of closed neighbours of the edge :{u,v}.
  {
    doubleVector common;
    doubleVector nonZeroIndices_u;
    doubleVector nonZeroIndices_v;
    double u = std::get<0>(e);
    double v = std::get<1>(e);

    nonZeroIndices_u = closed_neighbours_row_index(u);
    nonZeroIndices_v = closed_neighbours_row_index(v);
    std::set_intersection(nonZeroIndices_u.begin(), nonZeroIndices_u.end(), nonZeroIndices_v.begin(),
                          nonZeroIndices_v.end(), std::inserter(common, common.begin()));

    return common;
  }

  void setZero(double dominated, double dominating) {
    for (auto& v : closed_neighbours_row_index(dominated))
      if (not rowInsertIndicator[v])  // Checking if the row is already inserted
      {
        rowIterator.push(v);
        rowInsertIndicator[v] = true;
      }
    vertDomnIndicator[dominated] = true;
    ReductionMap[rowToVertex[dominated]] = rowToVertex[dominating];

    vertexToRow.erase(rowToVertex[dominated]);
    vertices.erase(rowToVertex[dominated]);
    rowToVertex.erase(dominated);
  }

  vertexVector closed_neighbours_vertex_index(double rowIndx)  // Returns list of non-zero "vertices" of the particular
                                                               // colIndx. the difference is in the return type
  {
    vertexVector colmns;
    for (auto& v : closed_neighbours_row_index(rowIndx))  // Iterate over the non-zero columns
      colmns.push_back(rowToVertex[v]);
    std::sort(colmns.begin(), colmns.end());
    return colmns;
  }

  vertexVector vertex_closed_active_neighbours(
      double rowIndx)  // Returns list of all non-zero "vertices" of the particular colIndx which are currently active.
                       // the difference is in the return type.
  {
    vertexVector colmns;
    for (auto& v : closed_neighbours_row_index(rowIndx))  // Iterate over the non-zero columns
      if (not contractionIndicator[v])                    // Check if the row corresponds to a contracted vertex
        colmns.push_back(rowToVertex[v]);
    std::sort(colmns.begin(), colmns.end());
    return colmns;
  }

  vertexVector closed_all_neighbours_row_index(
      double rowIndx)  // Returns list of all non-zero "vertices" of the particular colIndx whether dominated or not.
                       // the difference is in the return type.
  {
    vertexVector colmns;
    for (rowInnerIterator itCol(sparseRowAdjMatrix, rowIndx); itCol; ++itCol)  // Iterate over the non-zero columns
      colmns.push_back(rowToVertex[itCol.index()]);  // inner index, here it is equal to it.row()
    std::sort(colmns.begin(), colmns.end());
    return colmns;
  }

  void swap_rows(const Vertex& v,
                 const Vertex& w) {  // swap the rows of v and w. Both should be members of the skeleton
    if (membership(v) && membership(w)) {
      auto rw_v = vertexToRow[v];
      auto rw_w = vertexToRow[w];
      vertexToRow[v] = rw_w;
      vertexToRow[w] = rw_v;
      rowToVertex[rw_v] = w;
      rowToVertex[rw_w] = v;
    }
  }

 public:
  //! Default Constructor
  /*!
    Only initialises all Data Members of the class to empty/Null values as appropriate.
    One <I>WILL</I> have to create the matrix using the Constructor that has an object of the Simplex_tree class as
    argument.
  */

  FlagComplexSpMatrix() { init(); }

  FlagComplexSpMatrix(std::size_t expRows) {
    init();
    sparseRowAdjMatrix = sparseRowMatrix(
        expansion_limit * expRows,
        expansion_limit * expRows);  // Initializing sparseRowAdjMatrix, This is a row-major sparse matrix.
  }

  //! Main Constructor
  /*!
    Argument is an instance of Filtered_sorted_edge_list. <br>
    This is THE function that initialises all data members to appropriate values. <br>
    <B>rowToVertex</B>, <B>vertexToRow</B>, <B>rows</B>, <B>cols</B>, <B>sparseRowAdjMatrix</B> are initialised here.
    <B>vertDomnIndicator</B>, <B>rowInsertIndicator</B> ,<B>rowIterator<B> are initialised by init() function which is
    called at the begining of this. <br>
  */
  FlagComplexSpMatrix(const size_t& num_vertices, const Filtered_sorted_edge_list& edge_t) {
    init();
    sparseRowAdjMatrix = sparseRowMatrix(
        num_vertices, num_vertices);  // Initializing sparseRowAdjMatrix, This is a row-major sparse matrix.

    for (size_t bgn_idx = 0; bgn_idx < edge_t.size(); bgn_idx++) {
      // std::vector<size_t>  s = {std::get<1>(edge_t.at(bgn_idx)), std::get<2>(edge_t.at(bgn_idx))};
      // insert_new_edges(std::get<1>(edge_t.at(bgn_idx)), std::get<2>(edge_t.at(bgn_idx)), 1);
      fEgdeVector.push_back(
          {{std::get<1>(edge_t.at(bgn_idx)), std::get<2>(edge_t.at(bgn_idx))}, std::get<0>(edge_t.at(bgn_idx))});
    }

    // sparseRowAdjMatrix.makeCompressed();
  }

  //!	Destructor.
  /*!
    Frees up memory locations on the heap.
  */
  ~FlagComplexSpMatrix() {}

  //!	Function for performing strong collapse.
  /*!
    calls sparse_strong_vertex_collapse(), and
    Then, it compacts the ReductionMap by calling the function fully_compact().
  */
  double strong_vertex_collapse() {
    auto begin_collapse = std::chrono::high_resolution_clock::now();
    sparse_strong_vertex_collapse();
    vertexCollapsed = true;
    auto end_collapse = std::chrono::high_resolution_clock::now();

    auto collapseTime = std::chrono::duration<double, std::milli>(end_collapse - begin_collapse).count();
    // std::cout << "Time of Collapse : " << collapseTime << " ms\n" << std::endl;

    // Now we complete the Reduction Map
    fully_compact();
    // Post processing...
    after_vertex_collapse();
    return collapseTime;
  }

  // Performs edge collapse in a decreasing sequence of the filtration value.
  Filtered_sorted_edge_list filtered_edge_collapse() {
    critical_core_edges();
    vertexCollapsed = false;
    edgeCollapsed = true;
    return criticalCoreEdges;
  }

  // double strong_vertex_edge_collapse() {
  // 	auto begin_collapse  = std::chrono::high_resolution_clock::now();
  // 	strong_vertex_collapse();
  // 	strong_edge_collapse();
  // 	// strong_vertex_collapse();
  // 	auto end_collapse = std::chrono::high_resolution_clock::now();

  // 	auto collapseTime = std::chrono::duration<double, std::milli>(end_collapse- begin_collapse).count();
  // 	return collapseTime;
  // }

  bool membership(const Vertex& v) {
    auto rw = vertexToRow.find(v);
    if (rw != vertexToRow.end())
      return true;
    else
      return false;
  }

  bool membership(const Edge& e) {
    auto u = std::get<0>(e);
    auto v = std::get<1>(e);
    if (membership(u) && membership(v)) {
      auto rw_u = vertexToRow[u];
      auto rw_v = vertexToRow[v];
      if (rw_u <= rw_v)
        for (auto x : closed_neighbours_row_index(rw_v)) {  // Taking advantage of sorted lists.
          if (rw_u == x)
            return true;
          else if (rw_u < x)
            return false;
        }
      else
        for (auto x : closed_neighbours_row_index(rw_u)) {  // Taking advantage of sorted lists.
          if (rw_v == x)
            return true;
          else if (rw_v < x)
            return false;
        }
    }
    return false;
  }
  void insert_vertex(const Vertex& vertex, double filt_val) {
    auto rw = vertexToRow.find(vertex);
    if (rw == vertexToRow.end()) {
      sparseRowAdjMatrix.insert(rows, rows) =
          filt_val;  // Initializing the diagonal element of the adjency matrix corresponding to rw_b.
      vertDomnIndicator.push_back(false);
      rowInsertIndicator.push_back(true);
      contractionIndicator.push_back(false);
      rowIterator.push(rows);
      vertexToRow.insert(std::make_pair(vertex, rows));
      rowToVertex.insert(std::make_pair(rows, vertex));
      vertices.emplace(vertex);
      rows++;
    }
  }

  void insert_new_edges(const Vertex& u, const Vertex& v,
                        double filt_val)  // The edge must not be added before, it should be a new edge.
  {
    insert_vertex(u, filt_val);
    if (u != v) {
      insert_vertex(v, filt_val);
      // std::cout << "Insertion of the edge begins " << u <<", " << v << std::endl;

      auto rw_u = vertexToRow.find(u);
      auto rw_v = vertexToRow.find(v);
      // std::cout << "Inserting the edge " << u <<", " << v << std::endl;
      sparseRowAdjMatrix.insert(rw_u->second, rw_v->second) = filt_val;
      sparseRowAdjMatrix.insert(rw_v->second, rw_u->second) = filt_val;
      oneSimplices.emplace_back(u, v);
      numOneSimplices++;
    }
    // else
    // 	std::cout << "Already a member simplex,  skipping..." << std::endl;
  }

  std::size_t num_vertices() const { return vertices.size(); }

  //!	Function for returning the ReductionMap.
  /*!
    This is the (stl's unordered) map that stores all the collapses of vertices. <br>
    It is simply returned.
  */

  Map reduction_map() const { return ReductionMap; }
  std::unordered_set<Vertex> vertex_set() const { return vertices; }
  sparseRowMatrix collapsed_matrix() const { return *sparse_colpsd_adj_Matrix; }

  sparseRowMatrix uncollapsed_matrix() const { return sparseRowAdjMatrix; }

  edge_list all_edges() const { return oneSimplices; }

  vertexVector active_neighbors(const Vertex& v) {
    vertexVector nb;
    auto rw_v = vertexToRow.find(v);
    if (rw_v != vertexToRow.end()) {
      nb = vertex_closed_active_neighbours(rw_v->second);
    }
    return nb;
  }

  vertexVector neighbors(const Vertex& v) {
    vertexVector nb;
    auto rw_v = vertexToRow.find(v);
    if (rw_v != vertexToRow.end()) nb = closed_neighbours_vertex_index(rw_v->second);

    return nb;
  }

  vertexVector active_relative_neighbors(const Vertex& v, const Vertex& w) {
    std::vector<Vertex> diff;
    if (membership(v) && membership(w)) {
      auto nbhrs_v = active_neighbors(v);
      auto nbhrs_w = active_neighbors(w);
      std::set_difference(nbhrs_v.begin(), nbhrs_v.end(), nbhrs_w.begin(), nbhrs_w.end(),
                          std::inserter(diff, diff.begin()));
    }
    return diff;
  }

  void contraction(const Vertex& del, const Vertex& keep) {
    if (del != keep) {
      bool del_mem = membership(del);
      bool keep_mem = membership(keep);
      if (del_mem && keep_mem) {
        doubleVector del_indcs, keep_indcs, diff;
        auto row_del = vertexToRow[del];
        auto row_keep = vertexToRow[keep];
        del_indcs = closed_neighbours_row_index(row_del);
        keep_indcs = closed_neighbours_row_index(row_keep);
        std::set_difference(del_indcs.begin(), del_indcs.end(), keep_indcs.begin(), keep_indcs.end(),
                            std::inserter(diff, diff.begin()));
        for (auto& v : diff) {
          if (v != row_del) {
            sparseRowAdjMatrix.insert(row_keep, v) = 1;
            sparseRowAdjMatrix.insert(v, row_keep) = 1;
          }
        }
        vertexToRow.erase(del);
        vertices.erase(del);
        rowToVertex.erase(row_del);
        // setZero(row_del->second, row_keep->second);
      } else if (del_mem && not keep_mem) {
        vertexToRow.insert(std::make_pair(keep, vertexToRow.find(del)->second));
        rowToVertex[vertexToRow.find(del)->second] = keep;
        vertices.emplace(keep);
        vertices.erase(del);
        vertexToRow.erase(del);

      } else {
        std::cerr << "The first vertex entered in the method contraction() doesn't exist in the skeleton." << std::endl;
        exit(-1);
      }
    }
  }

  void relable(const Vertex& v, const Vertex& w) {  // relable v as w.
    if (membership(v) and v != w) {
      auto rw_v = vertexToRow[v];
      rowToVertex[rw_v] = w;
      vertexToRow.insert(std::make_pair(w, rw_v));
      vertices.emplace(w);
      vertexToRow.erase(v);
      vertices.erase(v);
      // std::cout<< "Re-named the vertex " << v << " as " << w << std::endl;
    }
  }

  // Returns the contracted edge. along with the contracted vertex in the begining of the list at {u,u} or {v,v}

  void active_strong_expansion(const Vertex& v, const Vertex& w, double filt_val) {
    if (membership(v) && membership(w) && v != w) {
      // std::cout << "Strong expansion of the vertex " << v << " and " << w << " begins. " << std::endl;
      auto active_list_v_w = active_relative_neighbors(v, w);
      auto active_list_w_v = active_relative_neighbors(w, v);
      if (active_list_w_v.size() <
          active_list_v_w.size()) {  // simulate the contraction of w by expanding the star of v
        for (auto& x : active_list_w_v) {
          active_edge_insertion(v, x, filt_val);
          // std::cout << "Inserted the edge " << v << " , " << x  << std::endl;
        }
        swap_rows(v, w);
        // std::cout << "A swap of the vertex " << v << " and " << w << "took place." << std::endl;
      } else {
        for (auto& y : active_list_v_w) {
          active_edge_insertion(w, y, filt_val);
          // std::cout << "Inserted the edge " << w << ", " << y  << std::endl;
        }
      }
      auto rw_v = vertexToRow.find(v);
      contractionIndicator[rw_v->second] = true;
    }
    if (membership(v) && !membership(w)) {
      relable(v, w);
    }
  }
  void active_edge_insertion(const Vertex& v, const Vertex& w, double filt_val) {
    insert_new_edges(v, w, filt_val);
    // update_active_indicator(v,w);
  }

  void print_sparse_skeleton() { std::cout << sparseRowAdjMatrix << std::endl; }
};