summaryrefslogtreecommitdiff
path: root/src/Toplex_map/include/gudhi/Fake_simplex_tree.h
blob: 6a0782eadbaaecb8d4983c9c30f3ed462f11539d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#ifndef FAKE_SIMPLEX_TREE_H
#define FAKE_SIMPLEX_TREE_H

#include <gudhi/Simplex_tree.h>
#include <gudhi/Filtered_toplex_map.h>

#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/bron_kerbosch_all_cliques.hpp>

#define filtration_upper_bound std::numeric_limits<Filtration_value>::max()

namespace Gudhi {

struct Visitor {
    Toplex_map* tm;

    Visitor(Toplex_map* tm)
        :tm(tm)
    {}

    template <typename Clique, typename Graph>
    void clique(const Clique& c, const Graph& g)
    {
        tm->insert_simplex(c);
    }
};

class Fake_simplex_tree : public Filtered_toplex_map {

public:

    typedef Vertex Vertex_handle;

    typedef Simplex Simplex_handle;

    typedef void Insertion_result_type;

    /** \brief Inserts a given range `Gudhi::rips_complex::Rips_complex::OneSkeletonGraph` in the simplicial
     * complex. */
    template<class OneSkeletonGraph>
    void insert_graph(const OneSkeletonGraph& skel_graph);

    /** \brief Expands the simplicial complex containing only its one skeleton until a given maximal dimension as
     * explained in \ref ripsdefinition. */
    void expansion(int max_dim);

    /** \brief Returns the number of vertices in the simplicial complex. */
    std::size_t num_vertices() const;

    Simplex_ptr_set candidates(int min_dim=-1) const;

    std::size_t dimension() const;

    std::size_t num_simplices() const;

    Simplex simplex_vertex_range(const Simplex& s) const;

    std::vector<Simplex> max_simplices() const;

    std::vector<Simplex> filtration_simplex_range() const;

    std::vector<Simplex> skeleton_simplex_range(int d=std::numeric_limits<int>::max()) const;

    std::size_t dimension(Simplex_ptr& sptr) const;

protected:

    /** \internal Does all the facets of the given simplex belong to the complex ?
     * \ingroup toplex_map   */
    template <typename Input_vertex_range>
    bool all_facets_inside(const Input_vertex_range &vertex_range) const;

};

template<class OneSkeletonGraph>
void Fake_simplex_tree::insert_graph(const OneSkeletonGraph& skel_graph){
    toplex_maps.emplace(filtration_upper_bound,Toplex_map());
    bron_kerbosch_all_cliques(skel_graph, Visitor(&(this->toplex_maps.at(filtration_upper_bound))));
}

void Fake_simplex_tree::expansion(int max_dim){}

template <typename Input_vertex_range>
bool Fake_simplex_tree::all_facets_inside(const Input_vertex_range &vertex_range) const{
    Simplex sigma(vertex_range);
    for(const Simplex& s : facets(sigma))
        if(!membership(s)) return false;
    return true;
}

std::size_t Fake_simplex_tree::dimension() const {
    std::size_t max = 0;
    for(const Simplex& s : max_simplices())
        max = std::max(max, s.size());
    return max-1;
}

std::size_t Fake_simplex_tree::num_simplices() const {
    //return filtration_simplex_range().size();
    return max_simplices().size();
}

std::size_t Fake_simplex_tree::num_vertices() const {
    std::unordered_set<Vertex> vertices;
    for(const Simplex& s : max_simplices())
        for (Vertex v : s)
            vertices.emplace(v);
    return vertices.size();
}

Simplex Fake_simplex_tree::simplex_vertex_range(const Simplex& s) const {
    return s;
}

std::vector<Simplex> Fake_simplex_tree::filtration_simplex_range() const{
    std::vector<Simplex> m = max_simplices();
    std::vector<Simplex> seen1;
    Simplex_ptr_set seen2;
    while(m.begin()!=m.end()){
        Simplex s(m.back());
        m.pop_back();
        if(seen2.find(get_key(s))==seen2.end()){
            seen1.emplace_back(s);
            seen2.emplace(get_key(s));
            if(s.size()>0)
                for(Simplex& sigma : facets(s))
                    m.emplace_back(sigma);
        }
    }
    return seen1;
}

std::vector<Simplex> Fake_simplex_tree::skeleton_simplex_range(int d) const{
    std::vector<Simplex> simplices;
    for(const Simplex& s : max_simplices())
        if(s.size()<=d)
            simplices.emplace_back(s);
    return simplices;
}

std::vector<Simplex> Fake_simplex_tree::max_simplices() const{
    std::vector<Simplex> max_s;
    for(auto kv : toplex_maps)
        for(const Simplex_ptr& sptr : kv.second.maximal_cofaces(Simplex()))
            max_s.emplace_back(*sptr);
    return max_s;
}

std::size_t Fake_simplex_tree::dimension(Simplex_ptr& sptr) const{
    return sptr->size();
}

} //namespace Gudhi

#endif /* FAKE_SIMPLEX_TREE_H */