summaryrefslogtreecommitdiff
path: root/src/python/doc/wasserstein_distance_user.rst
blob: d3daa3184e8b33d9c5b4009429adca565fa10030 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
:orphan:

.. To get rid of WARNING: document isn't included in any toctree

Wasserstein distance user manual
================================
Definition
----------

.. include:: wasserstein_distance_sum.inc

Functions
---------
This implementation uses the Python Optimal Transport library and is based on
ideas from "Large Scale Computation of Means and Cluster for Persistence
Diagrams via Optimal Transport" :cite:`10.5555/3327546.3327645`.

.. autofunction:: gudhi.wasserstein.wasserstein_distance

This other implementation comes from `Hera
<https://bitbucket.org/grey_narn/hera/src/master/>`_ (BSD-3-Clause) which is
based on "Geometry Helps to Compare Persistence Diagrams"
:cite:`Kerber:2017:GHC:3047249.3064175` by Michael Kerber, Dmitriy
Morozov, and Arnur Nigmetov.

.. autofunction:: gudhi.hera.wasserstein_distance

Basic example
-------------

This example computes the 1-Wasserstein distance from 2 persistence diagrams with Euclidean ground metric.
Note that persistence diagrams must be submitted as (n x 2) numpy arrays and must not contain inf values.

.. testcode::

    import gudhi.wasserstein
    import numpy as np

    diag1 = np.array([[2.7, 3.7],[9.6, 14.],[34.2, 34.974]])
    diag2 = np.array([[2.8, 4.45],[9.5, 14.1]])

    message = "Wasserstein distance value = " + '%.2f' % gudhi.wasserstein.wasserstein_distance(diag1, diag2, order=1., internal_p=2.)
    print(message)

The output is:

.. testoutput::

    Wasserstein distance value = 1.45

We can also have access to the optimal matching by letting `matching=True`. 
It is encoded as a list of indices (i,j), meaning that the i-th point in X
is mapped to the j-th point in Y. 
An index of -1 represents the diagonal.

.. testcode::

    import gudhi.wasserstein
    import numpy as np

    diag1 = np.array([[2.7, 3.7],[9.6, 14.],[34.2, 34.974]])
    diag2 = np.array([[2.8, 4.45], [5, 6], [9.5, 14.1]])
    cost, matching = gudhi.wasserstein.wasserstein_distance(diag1, diag2, matching=True, order=1., internal_p=2.)

    message = "Wasserstein distance value = %.2f, optimal matching: %s"  %(cost, matching)
    print(message)

The output is:

.. testoutput::
    
    Wasserstein distance value = 2.15, optimal matching: [(0, 0), (1, 2), (2, -1), (-1, 1)]