summaryrefslogtreecommitdiff
path: root/geom_bottleneck/bottleneck/include/ANN/ANN.h
diff options
context:
space:
mode:
Diffstat (limited to 'geom_bottleneck/bottleneck/include/ANN/ANN.h')
-rw-r--r--geom_bottleneck/bottleneck/include/ANN/ANN.h917
1 files changed, 0 insertions, 917 deletions
diff --git a/geom_bottleneck/bottleneck/include/ANN/ANN.h b/geom_bottleneck/bottleneck/include/ANN/ANN.h
deleted file mode 100644
index 004dfe2..0000000
--- a/geom_bottleneck/bottleneck/include/ANN/ANN.h
+++ /dev/null
@@ -1,917 +0,0 @@
-//----------------------------------------------------------------------
-// File: ANN.h
-// Programmer: Sunil Arya and David Mount
-// Description: Basic include file for approximate nearest
-// neighbor searching.
-// Last modified: 01/27/10 (Version 1.1.2)
-//----------------------------------------------------------------------
-// Copyright (c) 1997-2010 University of Maryland and Sunil Arya and
-// David Mount. All Rights Reserved.
-//
-// This software and related documentation is part of the Approximate
-// Nearest Neighbor Library (ANN). This software is provided under
-// the provisions of the Lesser GNU Public License (LGPL). See the
-// file ../ReadMe.txt for further information.
-//
-// The University of Maryland (U.M.) and the authors make no
-// representations about the suitability or fitness of this software for
-// any purpose. It is provided "as is" without express or implied
-// warranty.
-//----------------------------------------------------------------------
-// History:
-// Revision 0.1 03/04/98
-// Initial release
-// Revision 1.0 04/01/05
-// Added copyright and revision information
-// Added ANNcoordPrec for coordinate precision.
-// Added methods theDim, nPoints, maxPoints, thePoints to ANNpointSet.
-// Cleaned up C++ structure for modern compilers
-// Revision 1.1 05/03/05
-// Added fixed-radius k-NN searching
-// Revision 1.1.2 01/27/10
-// Fixed minor compilation bugs for new versions of gcc
-// --------------------------------------------------------------------
-// 2015 - modified by A. Nigmetov to support deletion of points
-//----------------------------------------------------------------------
-
-//----------------------------------------------------------------------
-// ANN - approximate nearest neighbor searching
-// ANN is a library for approximate nearest neighbor searching,
-// based on the use of standard and priority search in kd-trees
-// and balanced box-decomposition (bbd) trees. Here are some
-// references to the main algorithmic techniques used here:
-//
-// kd-trees:
-// Friedman, Bentley, and Finkel, ``An algorithm for finding
-// best matches in logarithmic expected time,'' ACM
-// Transactions on Mathematical Software, 3(3):209-226, 1977.
-//
-// Priority search in kd-trees:
-// Arya and Mount, ``Algorithms for fast vector quantization,''
-// Proc. of DCC '93: Data Compression Conference, eds. J. A.
-// Storer and M. Cohn, IEEE Press, 1993, 381-390.
-//
-// Approximate nearest neighbor search and bbd-trees:
-// Arya, Mount, Netanyahu, Silverman, and Wu, ``An optimal
-// algorithm for approximate nearest neighbor searching,''
-// 5th Ann. ACM-SIAM Symposium on Discrete Algorithms,
-// 1994, 573-582.
-//----------------------------------------------------------------------
-
-#ifndef ANN_H
-#define ANN_H
-
-// A. Nigmetov: ANN code is integrated into bottleneck library,
-// CMake will take care of correct __declspec, no need to define DLL_API
-#define DLL_API
-//#ifdef WIN32
- //----------------------------------------------------------------------
- // For Microsoft Visual C++, externally accessible symbols must be
- // explicitly indicated with DLL_API, which is somewhat like "extern."
- //
- // The following ifdef block is the standard way of creating macros
- // which make exporting from a DLL simpler. All files within this DLL
- // are compiled with the DLL_EXPORTS preprocessor symbol defined on the
- // command line. In contrast, projects that use (or import) the DLL
- // objects do not define the DLL_EXPORTS symbol. This way any other
- // project whose source files include this file see DLL_API functions as
- // being imported from a DLL, wheras this DLL sees symbols defined with
- // this macro as being exported.
- //----------------------------------------------------------------------
- //#ifdef DLL_EXPORTS
- // #define DLL_API __declspec(dllexport)
- //#else
- //#define DLL_API __declspec(dllimport)
- //#endif
- //----------------------------------------------------------------------
- // DLL_API is ignored for all other systems
- //----------------------------------------------------------------------
-//#else
- //#define DLL_API
-//#endif
-
-//----------------------------------------------------------------------
-// basic includes
-//----------------------------------------------------------------------
-
-#include <cstdlib> // standard lib includes
-#include <cmath> // math includes
-#include <cstring> // C-style strings
-#include <vector>
-#include <assert.h>
-
-//----------------------------------------------------------------------
-// Limits
-// There are a number of places where we use the maximum double value as
-// default initializers (and others may be used, depending on the
-// data/distance representation). These can usually be found in limits.h
-// (as LONG_MAX, INT_MAX) or in float.h (as DBL_MAX, FLT_MAX).
-//
-// Not all systems have these files. If you are using such a system,
-// you should set the preprocessor symbol ANN_NO_LIMITS_H when
-// compiling, and modify the statements below to generate the
-// appropriate value. For practical purposes, this does not need to be
-// the maximum double value. It is sufficient that it be at least as
-// large than the maximum squared distance between between any two
-// points.
-//----------------------------------------------------------------------
-#ifdef ANN_NO_LIMITS_H // limits.h unavailable
- #include <cvalues> // replacement for limits.h
- const double ANN_DBL_MAX = MAXDOUBLE; // insert maximum double
-#else
- #include <climits>
- #include <cfloat>
- const double ANN_DBL_MAX = DBL_MAX;
-#endif
-
-#define ANNversion "1.1.2" // ANN version and information
-#define ANNversionCmt ""
-#define ANNcopyright "David M. Mount and Sunil Arya"
-#define ANNlatestRev "Jan 27, 2010"
-
-#include "def_debug_bt.h"
-
-#ifndef FOR_R_TDA
-#include <iostream> // I/O streams
-#endif
-
-namespace geom_bt {
-//----------------------------------------------------------------------
-// ANNbool
-// This is a simple boolean type. Although ANSI C++ is supposed
-// to support the type bool, some compilers do not have it.
-//----------------------------------------------------------------------
-
-
-enum ANNbool {ANNfalse = 0, ANNtrue = 1}; // ANN boolean type (non ANSI C++)
-
-//----------------------------------------------------------------------
-// ANNcoord, ANNdist
-// ANNcoord and ANNdist are the types used for representing
-// point coordinates and distances. They can be modified by the
-// user, with some care. It is assumed that they are both numeric
-// types, and that ANNdist is generally of an equal or higher type
-// from ANNcoord. A variable of type ANNdist should be large
-// enough to store the sum of squared components of a variable
-// of type ANNcoord for the number of dimensions needed in the
-// application. For example, the following combinations are
-// legal:
-//
-// ANNcoord ANNdist
-// --------- -------------------------------
-// short short, int, long, float, double
-// int int, long, float, double
-// long long, float, double
-// float float, double
-// double double
-//
-// It is the user's responsibility to make sure that overflow does
-// not occur in distance calculation.
-//----------------------------------------------------------------------
-
-typedef double ANNcoord; // coordinate data type
-typedef double ANNdist; // distance data type
-
-//----------------------------------------------------------------------
-// ANNidx
-// ANNidx is a point index. When the data structure is built, the
-// points are given as an array. Nearest neighbor results are
-// returned as an integer index into this array. To make it
-// clearer when this is happening, we define the integer type
-// ANNidx. Indexing starts from 0.
-//
-// For fixed-radius near neighbor searching, it is possible that
-// there are not k nearest neighbors within the search radius. To
-// indicate this, the algorithm returns ANN_NULL_IDX as its result.
-// It should be distinguishable from any valid array index.
-//----------------------------------------------------------------------
-
-typedef int ANNidx; // point index
-const ANNidx ANN_NULL_IDX = -1; // a NULL point index
-
-//----------------------------------------------------------------------
-// Infinite distance:
-// The code assumes that there is an "infinite distance" which it
-// uses to initialize distances before performing nearest neighbor
-// searches. It should be as larger or larger than any legitimate
-// nearest neighbor distance.
-//
-// On most systems, these should be found in the standard include
-// file <limits.h> or possibly <float.h>. If you do not have these
-// file, some suggested values are listed below, assuming 64-bit
-// long, 32-bit int and 16-bit short.
-//
-// ANNdist ANN_DIST_INF Values (see <limits.h> or <float.h>)
-// ------- ------------ ------------------------------------
-// double DBL_MAX 1.79769313486231570e+308
-// float FLT_MAX 3.40282346638528860e+38
-// long LONG_MAX 0x7fffffffffffffff
-// int INT_MAX 0x7fffffff
-// short SHRT_MAX 0x7fff
-//----------------------------------------------------------------------
-
-const ANNdist ANN_DIST_INF = ANN_DBL_MAX;
-
-//----------------------------------------------------------------------
-// Significant digits for tree dumps:
-// When floating point coordinates are used, the routine that dumps
-// a tree needs to know roughly how many significant digits there
-// are in a ANNcoord, so it can output points to full precision.
-// This is defined to be ANNcoordPrec. On most systems these
-// values can be found in the standard include files <limits.h> or
-// <float.h>. For integer types, the value is essentially ignored.
-//
-// ANNcoord ANNcoordPrec Values (see <limits.h> or <float.h>)
-// -------- ------------ ------------------------------------
-// double DBL_DIG 15
-// float FLT_DIG 6
-// long doesn't matter 19
-// int doesn't matter 10
-// short doesn't matter 5
-//----------------------------------------------------------------------
-
-#ifdef DBL_DIG // number of sig. bits in ANNcoord
- const int ANNcoordPrec = DBL_DIG;
-#else
- const int ANNcoordPrec = 15; // default precision
-#endif
-
-//----------------------------------------------------------------------
-// Self match?
-// In some applications, the nearest neighbor of a point is not
-// allowed to be the point itself. This occurs, for example, when
-// computing all nearest neighbors in a set. By setting the
-// parameter ANN_ALLOW_SELF_MATCH to ANNfalse, the nearest neighbor
-// is the closest point whose distance from the query point is
-// strictly positive.
-//----------------------------------------------------------------------
-
-const ANNbool ANN_ALLOW_SELF_MATCH = ANNtrue;
-
-//----------------------------------------------------------------------
-// Norms and metrics:
-// ANN supports any Minkowski norm for defining distance. In
-// particular, for any p >= 1, the L_p Minkowski norm defines the
-// length of a d-vector (v0, v1, ..., v(d-1)) to be
-//
-// (|v0|^p + |v1|^p + ... + |v(d-1)|^p)^(1/p),
-//
-// (where ^ denotes exponentiation, and |.| denotes absolute
-// value). The distance between two points is defined to be the
-// norm of the vector joining them. Some common distance metrics
-// include
-//
-// Euclidean metric p = 2
-// Manhattan metric p = 1
-// Max metric p = infinity
-//
-// In the case of the max metric, the norm is computed by taking
-// the maxima of the absolute values of the components. ANN is
-// highly "coordinate-based" and does not support general distances
-// functions (e.g. those obeying just the triangle inequality). It
-// also does not support distance functions based on
-// inner-products.
-//
-// For the purpose of computing nearest neighbors, it is not
-// necessary to compute the final power (1/p). Thus the only
-// component that is used by the program is |v(i)|^p.
-//
-// ANN parameterizes the distance computation through the following
-// macros. (Macros are used rather than procedures for
-// efficiency.) Recall that the distance between two points is
-// given by the length of the vector joining them, and the length
-// or norm of a vector v is given by formula:
-//
-// |v| = ROOT(POW(v0) # POW(v1) # ... # POW(v(d-1)))
-//
-// where ROOT, POW are unary functions and # is an associative and
-// commutative binary operator mapping the following types:
-//
-// ** POW: ANNcoord --> ANNdist
-// ** #: ANNdist x ANNdist --> ANNdist
-// ** ROOT: ANNdist (>0) --> double
-//
-// For early termination in distance calculation (partial distance
-// calculation) we assume that POW and # together are monotonically
-// increasing on sequences of arguments, meaning that for all
-// v0..vk and y:
-//
-// POW(v0) #...# POW(vk) <= (POW(v0) #...# POW(vk)) # POW(y).
-//
-// Incremental Distance Calculation:
-// The program uses an optimized method of computing distances for
-// kd-trees and bd-trees, called incremental distance calculation.
-// It is used when distances are to be updated when only a single
-// coordinate of a point has been changed. In order to use this,
-// we assume that there is an incremental update function DIFF(x,y)
-// for #, such that if:
-//
-// s = x0 # ... # xi # ... # xk
-//
-// then if s' is equal to s but with xi replaced by y, that is,
-//
-// s' = x0 # ... # y # ... # xk
-//
-// then the length of s' can be computed by:
-//
-// |s'| = |s| # DIFF(xi,y).
-//
-// Thus, if # is + then DIFF(xi,y) is (yi-x). For the L_infinity
-// norm we make use of the fact that in the program this function
-// is only invoked when y > xi, and hence DIFF(xi,y)=y.
-//
-// Finally, for approximate nearest neighbor queries we assume
-// that POW and ROOT are related such that
-//
-// v*ROOT(x) = ROOT(POW(v)*x)
-//
-// Here are the values for the various Minkowski norms:
-//
-// L_p: p even: p odd:
-// ------------------------- ------------------------
-// POW(v) = v^p POW(v) = |v|^p
-// ROOT(x) = x^(1/p) ROOT(x) = x^(1/p)
-// # = + # = +
-// DIFF(x,y) = y - x DIFF(x,y) = y - x
-//
-// L_inf:
-// POW(v) = |v|
-// ROOT(x) = x
-// # = max
-// DIFF(x,y) = y
-//
-// By default the Euclidean norm is assumed. To change the norm,
-// uncomment the appropriate set of macros below.
-//----------------------------------------------------------------------
-
-//----------------------------------------------------------------------
-// Use the following for the Euclidean norm
-//----------------------------------------------------------------------
-//#define ANN_POW(v) ((v)*(v))
-//#define ANN_ROOT(x) sqrt(x)
-//#define ANN_SUM(x,y) ((x) + (y))
-//#define ANN_DIFF(x,y) ((y) - (x))
-
-//----------------------------------------------------------------------
-// Use the following for the L_1 (Manhattan) norm
-//----------------------------------------------------------------------
-// #define ANN_POW(v) fabs(v)
-// #define ANN_ROOT(x) (x)
-// #define ANN_SUM(x,y) ((x) + (y))
-// #define ANN_DIFF(x,y) ((y) - (x))
-
-//----------------------------------------------------------------------
-// Use the following for a general L_p norm
-//----------------------------------------------------------------------
-// #define ANN_POW(v) pow(fabs(v),p)
-// #define ANN_ROOT(x) pow(fabs(x),1/p)
-// #define ANN_SUM(x,y) ((x) + (y))
-// #define ANN_DIFF(x,y) ((y) - (x))
-
-//----------------------------------------------------------------------
-// Use the following for the L_infinity (Max) norm
-//----------------------------------------------------------------------
-#define ANN_POW(v) fabs(v)
-#define ANN_ROOT(x) (x)
-#define ANN_SUM(x,y) ((x) > (y) ? (x) : (y))
-#define ANN_DIFF(x,y) (y)
-
-//----------------------------------------------------------------------
-// Array types
-// The following array types are of basic interest. A point is
-// just a dimensionless array of coordinates, a point array is a
-// dimensionless array of points. A distance array is a
-// dimensionless array of distances and an index array is a
-// dimensionless array of point indices. The latter two are used
-// when returning the results of k-nearest neighbor queries.
-//----------------------------------------------------------------------
-
-typedef ANNcoord* ANNpoint; // a point
-typedef ANNpoint* ANNpointArray; // an array of points
-typedef ANNdist* ANNdistArray; // an array of distances
-typedef ANNidx* ANNidxArray; // an array of point indices
-
-//----------------------------------------------------------------------
-// Basic point and array utilities:
-// The following procedures are useful supplements to ANN's nearest
-// neighbor capabilities.
-//
-// annDist():
-// Computes the (squared) distance between a pair of points.
-// Note that this routine is not used internally by ANN for
-// computing distance calculations. For reasons of efficiency
-// this is done using incremental distance calculation. Thus,
-// this routine cannot be modified as a method of changing the
-// metric.
-//
-// Because points (somewhat like strings in C) are stored as
-// pointers. Consequently, creating and destroying copies of
-// points may require storage allocation. These procedures do
-// this.
-//
-// annAllocPt() and annDeallocPt():
-// Allocate a deallocate storage for a single point, and
-// return a pointer to it. The argument to AllocPt() is
-// used to initialize all components.
-//
-// annAllocPts() and annDeallocPts():
-// Allocate and deallocate an array of points as well a
-// place to store their coordinates, and initializes the
-// points to point to their respective coordinates. It
-// allocates point storage in a contiguous block large
-// enough to store all the points. It performs no
-// initialization.
-//
-// annCopyPt():
-// Creates a copy of a given point, allocating space for
-// the new point. It returns a pointer to the newly
-// allocated copy.
-//----------------------------------------------------------------------
-
-DLL_API ANNdist annDist(
- int dim, // dimension of space
- ANNpoint p, // points
- ANNpoint q);
-
-DLL_API ANNpoint annAllocPt(
- int dim, // dimension
- ANNcoord c = 0); // coordinate value (all equal)
-
-DLL_API ANNpointArray annAllocPts(
- int n, // number of points
- int dim); // dimension
-
-DLL_API void annDeallocPt(
- ANNpoint &p); // deallocate 1 point
-
-DLL_API void annDeallocPts(
- ANNpointArray &pa); // point array
-
-DLL_API ANNpoint annCopyPt(
- int dim, // dimension
- ANNpoint source); // point to copy
-
-
-//----------------------------------------------------------------------
-// Orthogonal (axis aligned) rectangle
-// Orthogonal rectangles are represented by two points, one
-// for the lower left corner (min coordinates) and the other
-// for the upper right corner (max coordinates).
-//
-// The constructor initializes from either a pair of coordinates,
-// pair of points, or another rectangle. Note that all constructors
-// allocate new point storage. The destructor deallocates this
-// storage.
-//
-// BEWARE: Orthogonal rectangles should be passed ONLY BY REFERENCE.
-// (C++'s default copy constructor will not allocate new point
-// storage, then on return the destructor free's storage, and then
-// you get into big trouble in the calling procedure.)
-//----------------------------------------------------------------------
-
-class DLL_API ANNorthRect {
-public:
- ANNpoint lo; // rectangle lower bounds
- ANNpoint hi; // rectangle upper bounds
-//
- ANNorthRect( // basic constructor
- int dd, // dimension of space
- ANNcoord l=0, // default is empty
- ANNcoord h=0)
- { lo = annAllocPt(dd, l); hi = annAllocPt(dd, h); }
-
- ANNorthRect( // (almost a) copy constructor
- int dd, // dimension
- const ANNorthRect &r) // rectangle to copy
- { lo = annCopyPt(dd, r.lo); hi = annCopyPt(dd, r.hi); }
-
- ANNorthRect( // construct from points
- int dd, // dimension
- ANNpoint l, // low point
- ANNpoint h) // hight point
- { lo = annCopyPt(dd, l); hi = annCopyPt(dd, h); }
-
- ~ANNorthRect() // destructor
- { annDeallocPt(lo); annDeallocPt(hi); }
-
- ANNbool inside(const int dim, ANNpoint p) const;// is point p inside rectangle?
- bool contains(const int dim, const ANNorthRect& r) const;
- bool intersects(const int dim, const ANNorthRect& r) const;
-};
-
-
-//----------------------------------------------------------------------
-//Overall structure: ANN supports a number of different data structures
-//for approximate and exact nearest neighbor searching. These are:
-//
-// ANNbruteForce A simple brute-force search structure.
-// ANNkd_tree A kd-tree tree search structure. ANNbd_tree
-// A bd-tree tree search structure (a kd-tree with shrink
-// capabilities).
-//
-// At a minimum, each of these data structures support k-nearest
-// neighbor queries. The nearest neighbor query, annkSearch,
-// returns an integer identifier and the distance to the nearest
-// neighbor(s) and annRangeSearch returns the nearest points that
-// lie within a given query ball.
-//
-// Each structure is built by invoking the appropriate constructor
-// and passing it (at a minimum) the array of points, the total
-// number of points and the dimension of the space. Each structure
-// is also assumed to support a destructor and member functions
-// that return basic information about the point set.
-//
-// Note that the array of points is not copied by the data
-// structure (for reasons of space efficiency), and it is assumed
-// to be constant throughout the lifetime of the search structure.
-//
-// The search algorithm, annkSearch, is given the query point (q),
-// and the desired number of nearest neighbors to report (k), and
-// the error bound (eps) (whose default value is 0, implying exact
-// nearest neighbors). It returns two arrays which are assumed to
-// contain at least k elements: one (nn_idx) contains the indices
-// (within the point array) of the nearest neighbors and the other
-// (dd) contains the squared distances to these nearest neighbors.
-//
-// The search algorithm, annkFRSearch, is a fixed-radius kNN
-// search. In addition to a query point, it is given a (squared)
-// radius bound. (This is done for consistency, because the search
-// returns distances as squared quantities.) It does two things.
-// First, it computes the k nearest neighbors within the radius
-// bound, and second, it returns the total number of points lying
-// within the radius bound. It is permitted to set k = 0, in which
-// case it effectively answers a range counting query. If the
-// error bound epsilon is positive, then the search is approximate
-// in the sense that it is free to ignore any point that lies
-// outside a ball of radius r/(1+epsilon), where r is the given
-// (unsquared) radius bound.
-//
-// The generic object from which all the search structures are
-// dervied is given below. It is a virtual object, and is useless
-// by itself.
-//----------------------------------------------------------------------
-
-class DLL_API ANNpointSet {
-public:
- virtual ~ANNpointSet() {} // virtual distructor
-
- virtual void annkSearch( // approx k near neighbor search
- ANNpoint q, // query point
- int k, // number of near neighbors to return
- ANNidxArray nn_idx, // nearest neighbor array (modified)
- ANNdistArray dd, // dist to near neighbors (modified)
- double eps=0.0 // error bound
- ) = 0; // pure virtual (defined elsewhere)
-
- virtual int annkFRSearch( // approx fixed-radius kNN search
- ANNpoint q, // query point
- ANNdist sqRad, // squared radius
- int k = 0, // number of near neighbors to return
- ANNidxArray nn_idx = NULL, // nearest neighbor array (modified)
- ANNdistArray dd = NULL, // dist to near neighbors (modified)
- double eps=0.0 // error bound
- ) = 0; // pure virtual (defined elsewhere)
-
- virtual int theDim() = 0; // return dimension of space
- virtual int nPoints() = 0; // return number of points
- // return pointer to points
- virtual ANNpointArray thePoints() = 0;
-};
-
-//----------------------------------------------------------------------
-// Brute-force nearest neighbor search:
-// The brute-force search structure is very simple but inefficient.
-// It has been provided primarily for the sake of comparison with
-// and validation of the more complex search structures.
-//
-// Query processing is the same as described above, but the value
-// of epsilon is ignored, since all distance calculations are
-// performed exactly.
-//
-// WARNING: This data structure is very slow, and should not be
-// used unless the number of points is very small.
-//
-// Internal information:
-// ---------------------
-// This data structure bascially consists of the array of points
-// (each a pointer to an array of coordinates). The search is
-// performed by a simple linear scan of all the points.
-//----------------------------------------------------------------------
-
-class DLL_API ANNbruteForce: public ANNpointSet {
- int dim; // dimension
- int n_pts; // number of points
- ANNpointArray pts; // point array
-public:
- ANNbruteForce( // constructor from point array
- ANNpointArray pa, // point array
- int n, // number of points
- int dd); // dimension
-
- ~ANNbruteForce(); // destructor
-
- void annkSearch( // approx k near neighbor search
- ANNpoint q, // query point
- int k, // number of near neighbors to return
- ANNidxArray nn_idx, // nearest neighbor array (modified)
- ANNdistArray dd, // dist to near neighbors (modified)
- double eps=0.0); // error bound
-
- int annkFRSearch( // approx fixed-radius kNN search
- ANNpoint q, // query point
- ANNdist sqRad, // squared radius
- int k = 0, // number of near neighbors to return
- ANNidxArray nn_idx = NULL, // nearest neighbor array (modified)
- ANNdistArray dd = NULL, // dist to near neighbors (modified)
- double eps=0.0); // error bound
-
- int theDim() // return dimension of space
- { return dim; }
-
- int nPoints() // return number of points
- { return n_pts; }
-
- ANNpointArray thePoints() // return pointer to points
- { return pts; }
-};
-
-//----------------------------------------------------------------------
-// kd- and bd-tree splitting and shrinking rules
-// kd-trees supports a collection of different splitting rules.
-// In addition to the standard kd-tree splitting rule proposed
-// by Friedman, Bentley, and Finkel, we have introduced a
-// number of other splitting rules, which seem to perform
-// as well or better (for the distributions we have tested).
-//
-// The splitting methods given below allow the user to tailor
-// the data structure to the particular data set. They are
-// are described in greater details in the kd_split.cc source
-// file. The method ANN_KD_SUGGEST is the method chosen (rather
-// subjectively) by the implementors as the one giving the
-// fastest performance, and is the default splitting method.
-//
-// As with splitting rules, there are a number of different
-// shrinking rules. The shrinking rule ANN_BD_NONE does no
-// shrinking (and hence produces a kd-tree tree). The rule
-// ANN_BD_SUGGEST uses the implementors favorite rule.
-//----------------------------------------------------------------------
-
-enum ANNsplitRule {
- ANN_KD_STD = 0, // the optimized kd-splitting rule
- ANN_KD_MIDPT = 1, // midpoint split
- ANN_KD_FAIR = 2, // fair split
- ANN_KD_SL_MIDPT = 3, // sliding midpoint splitting method
- ANN_KD_SL_FAIR = 4, // sliding fair split method
- ANN_KD_SUGGEST = 5, // the authors' suggestion for best
- // for kd-trees with deletion
- //ANN_KD_STD_WD = 6,
- //ANN_KD_MIDPT_WD = 7,
- //ANN_KD_SL_MIDPT_WD = 8
- };
-const int ANN_N_SPLIT_RULES = 6; // number of split rules
-//const int ANN_N_SPLIT_RULES = 9; // number of split rules
-
-enum ANNshrinkRule {
- ANN_BD_NONE = 0, // no shrinking at all (just kd-tree)
- ANN_BD_SIMPLE = 1, // simple splitting
- ANN_BD_CENTROID = 2, // centroid splitting
- ANN_BD_SUGGEST = 3}; // the authors' suggested choice
-const int ANN_N_SHRINK_RULES = 4; // number of shrink rules
-
-//----------------------------------------------------------------------
-// kd-tree:
-// The main search data structure supported by ANN is a kd-tree.
-// The main constructor is given a set of points and a choice of
-// splitting method to use in building the tree.
-//
-// Construction:
-// -------------
-// The constructor is given the point array, number of points,
-// dimension, bucket size (default = 1), and the splitting rule
-// (default = ANN_KD_SUGGEST). The point array is not copied, and
-// is assumed to be kept constant throughout the lifetime of the
-// search structure. There is also a "load" constructor that
-// builds a tree from a file description that was created by the
-// Dump operation.
-//
-// Search:
-// -------
-// There are two search methods:
-//
-// Standard search (annkSearch()):
-// Searches nodes in tree-traversal order, always visiting
-// the closer child first.
-// Priority search (annkPriSearch()):
-// Searches nodes in order of increasing distance of the
-// associated cell from the query point. For many
-// distributions the standard search seems to work just
-// fine, but priority search is safer for worst-case
-// performance.
-//
-// Printing:
-// ---------
-// There are two methods provided for printing the tree. Print()
-// is used to produce a "human-readable" display of the tree, with
-// indenation, which is handy for debugging. Dump() produces a
-// format that is suitable reading by another program. There is a
-// "load" constructor, which constructs a tree which is assumed to
-// have been saved by the Dump() procedure.
-//
-// Performance and Structure Statistics:
-// -------------------------------------
-// The procedure getStats() collects statistics information on the
-// tree (its size, height, etc.) See ANNperf.h for information on
-// the stats structure it returns.
-//
-// Internal information:
-// ---------------------
-// The data structure consists of three major chunks of storage.
-// The first (implicit) storage are the points themselves (pts),
-// which have been provided by the users as an argument to the
-// constructor, or are allocated dynamically if the tree is built
-// using the load constructor). These should not be changed during
-// the lifetime of the search structure. It is the user's
-// responsibility to delete these after the tree is destroyed.
-//
-// The second is the tree itself (which is dynamically allocated in
-// the constructor) and is given as a pointer to its root node
-// (root). These nodes are automatically deallocated when the tree
-// is deleted. See the file src/kd_tree.h for further information
-// on the structure of the tree nodes.
-//
-// Each leaf of the tree does not contain a pointer directly to a
-// point, but rather contains a pointer to a "bucket", which is an
-// array consisting of point indices. The third major chunk of
-// storage is an array (pidx), which is a large array in which all
-// these bucket subarrays reside. (The reason for storing them
-// separately is the buckets are typically small, but of varying
-// sizes. This was done to avoid fragmentation.) This array is
-// also deallocated when the tree is deleted.
-//
-// In addition to this, the tree consists of a number of other
-// pieces of information which are used in searching and for
-// subsequent tree operations. These consist of the following:
-//
-// dim Dimension of space
-// n_pts Number of points currently in the tree
-// n_max Maximum number of points that are allowed
-// in the tree
-// bkt_size Maximum bucket size (no. of points per leaf)
-// bnd_box_lo Bounding box low point
-// bnd_box_hi Bounding box high point
-// splitRule Splitting method used
-//
-//----------------------------------------------------------------------
-
-//----------------------------------------------------------------------
-// Some types and objects used by kd-tree functions
-// See src/kd_tree.h and src/kd_tree.cpp for definitions
-//----------------------------------------------------------------------
-class ANNkdStats; // stats on kd-tree
-class ANNkd_node; // generic node in a kd-tree
-typedef ANNkd_node* ANNkd_ptr; // pointer to a kd-tree node
-class ANNkd_leaf;
-
-class DLL_API ANNkd_tree: public ANNpointSet {
-protected:
- int dim; // dimension of space
- int n_pts; // number of points in tree
- int bkt_size; // bucket size
- ANNpointArray pts; // the points
- ANNidxArray pidx; // point indices (to pts array)
- ANNkd_ptr root; // root of kd-tree
- ANNpoint bnd_box_lo; // bounding box low point
- ANNpoint bnd_box_hi; // bounding box high point
-
- void SkeletonTree( // construct skeleton tree
- int n, // number of points
- int dd, // dimension
- int bs, // bucket size
- ANNpointArray pa = NULL, // point array (optional)
- ANNidxArray pi = NULL); // point indices (optional)
-
-public:
- ANNkd_tree( // build skeleton tree
- int n = 0, // number of points
- int dd = 0, // dimension
- int bs = 1); // bucket size
-
- ANNkd_tree( // build from point array
- ANNpointArray pa, // point array
- int n, // number of points
- int dd, // dimension
- int bs = 1, // bucket size
- ANNsplitRule split = ANN_KD_SUGGEST); // splitting method
-
-#ifndef FOR_R_TDA
- ANNkd_tree( // build from dump file
- std::istream& in); // input stream for dump file
-#endif
-
- ~ANNkd_tree(); // tree destructor
-
- void annkSearch( // approx k near neighbor search
- ANNpoint q, // query point
- int k, // number of near neighbors to return
- ANNidxArray nn_idx, // nearest neighbor array (modified)
- ANNdistArray dd, // dist to near neighbors (modified)
- double eps=0.0); // error bound
-
- void annkPriSearch( // priority k near neighbor search
- ANNpoint q, // query point
- int k, // number of near neighbors to return
- ANNidxArray nn_idx, // nearest neighbor array (modified)
- ANNdistArray dd, // dist to near neighbors (modified)
- double eps=0.0); // error bound
-
- int annkFRSearch( // approx fixed-radius kNN search
- ANNpoint q, // the query point
- ANNdist sqRad, // squared radius of query ball
- int k, // number of neighbors to return
- ANNidxArray nn_idx = NULL, // nearest neighbor array (modified)
- ANNdistArray dd = NULL, // dist to near neighbors (modified)
- double eps=0.0); // error bound
-
- int theDim() // return dimension of space
- { return dim; }
-
- int nPoints() // return number of points
- { return n_pts; }
-
- ANNpointArray thePoints() // return pointer to points
- { return pts; }
-
-#ifndef FOR_R_TDA
- virtual void Print( // print the tree (for debugging)
- ANNbool with_pts, // print points as well?
- std::ostream& out); // output stream
-
- virtual void Dump( // dump entire tree
- ANNbool with_pts, // print points as well?
- std::ostream& out); // output stream
-#endif
-
- virtual void getStats( // compute tree statistics
- ANNkdStats& st); // the statistics (modified)
-
- ///////////////////////////////////////////////////////////////
- // for deletion
- std::vector<ANNkd_leaf*> pointToLeafVec;
- std::vector<bool> isDeleted; // will be used to check implementation;
- //TODO remove after testing
- void delete_point(const int point_idx);
- int actual_num_points;
- int getActualNumPoints(void) const { return actual_num_points; }
- void range_search(const ANNorthRect& region, std::vector<size_t>& pointIdices);
-};
-
-//----------------------------------------------------------------------
-// Box decomposition tree (bd-tree)
-// The bd-tree is inherited from a kd-tree. The main difference
-// in the bd-tree and the kd-tree is a new type of internal node
-// called a shrinking node (in the kd-tree there is only one type
-// of internal node, a splitting node). The shrinking node
-// makes it possible to generate balanced trees in which the
-// cells have bounded aspect ratio, by allowing the decomposition
-// to zoom in on regions of dense point concentration. Although
-// this is a nice idea in theory, few point distributions are so
-// densely clustered that this is really needed.
-//----------------------------------------------------------------------
-
-class DLL_API ANNbd_tree: public ANNkd_tree {
-public:
- ANNbd_tree( // build skeleton tree
- int n, // number of points
- int dd, // dimension
- int bs = 1) // bucket size
- : ANNkd_tree(n, dd, bs) {} // build base kd-tree
-
- ANNbd_tree( // build from point array
- ANNpointArray pa, // point array
- int n, // number of points
- int dd, // dimension
- int bs = 1, // bucket size
- ANNsplitRule split = ANN_KD_SUGGEST, // splitting rule
- ANNshrinkRule shrink = ANN_BD_SUGGEST); // shrinking rule
-
-#ifndef FOR_R_TDA
- ANNbd_tree( // build from dump file
- std::istream& in); // input stream for dump file
-#endif
-};
-
-//----------------------------------------------------------------------
-// Other functions
-// annMaxPtsVisit Sets a limit on the maximum number of points
-// to visit in the search.
-// annClose Can be called when all use of ANN is finished.
-// It clears up a minor memory leak.
-//----------------------------------------------------------------------
-
-DLL_API void annMaxPtsVisit( // max. pts to visit in search
- int maxPts); // the limit
-
-DLL_API void annClose(); // called to end use of ANN
-
-}
-#endif