summaryrefslogtreecommitdiff
path: root/geom_bottleneck/bottleneck/src/ann/bd_tree.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'geom_bottleneck/bottleneck/src/ann/bd_tree.cpp')
-rw-r--r--geom_bottleneck/bottleneck/src/ann/bd_tree.cpp422
1 files changed, 0 insertions, 422 deletions
diff --git a/geom_bottleneck/bottleneck/src/ann/bd_tree.cpp b/geom_bottleneck/bottleneck/src/ann/bd_tree.cpp
deleted file mode 100644
index a5dd69c..0000000
--- a/geom_bottleneck/bottleneck/src/ann/bd_tree.cpp
+++ /dev/null
@@ -1,422 +0,0 @@
-//----------------------------------------------------------------------
-// File: bd_tree.cpp
-// Programmer: David Mount
-// Description: Basic methods for bd-trees.
-// Last modified: 01/04/05 (Version 1.0)
-//----------------------------------------------------------------------
-// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and
-// David Mount. All Rights Reserved.
-//
-// This software and related documentation is part of the Approximate
-// Nearest Neighbor Library (ANN). This software is provided under
-// the provisions of the Lesser GNU Public License (LGPL). See the
-// file ../ReadMe.txt for further information.
-//
-// The University of Maryland (U.M.) and the authors make no
-// representations about the suitability or fitness of this software for
-// any purpose. It is provided "as is" without express or implied
-// warranty.
-//----------------------------------------------------------------------
-// History:
-// Revision 0.1 03/04/98
-// Initial release
-// Revision l.0 04/01/05
-// Fixed centroid shrink threshold condition to depend on the
-// dimension.
-// Moved dump routine to kd_dump.cpp.
-//----------------------------------------------------------------------
-
-#include "bd_tree.h" // bd-tree declarations
-#include "kd_util.h" // kd-tree utilities
-#include "kd_split.h" // kd-tree splitting rules
-
-#include <ANN/ANNperf.h> // performance evaluation
-#include "def_debug_bt.h"
-
-namespace geom_bt {
-//----------------------------------------------------------------------
-// Printing a bd-tree
-// These routines print a bd-tree. See the analogous procedure
-// in kd_tree.cpp for more information.
-//----------------------------------------------------------------------
-
-void ANNbd_shrink::print( // print shrinking node
- int level, // depth of node in tree
- ostream &out) // output stream
-{
-#ifndef FOR_R_TDA
- child[ANN_OUT]->print(level+1, out); // print out-child
-
- out << " ";
- for (int i = 0; i < level; i++) // print indentation
- out << "..";
- out << "Shrink";
- for (int j = 0; j < n_bnds; j++) { // print sides, 2 per line
- if (j % 2 == 0) {
- out << "\n"; // newline and indentation
- for (int i = 0; i < level+2; i++) out << " ";
- }
- out << " ([" << bnds[j].cd << "]"
- << (bnds[j].sd > 0 ? ">=" : "< ")
- << bnds[j].cv << ")";
- }
- out << "\n";
-
- child[ANN_IN]->print(level+1, out); // print in-child
-#endif
-}
-
-//----------------------------------------------------------------------
-// kd_tree statistics utility (for performance evaluation)
-// This routine computes various statistics information for
-// shrinking nodes. See file kd_tree.cpp for more information.
-//----------------------------------------------------------------------
-
-void ANNbd_shrink::getStats( // get subtree statistics
- int dim, // dimension of space
- ANNkdStats &st, // stats (modified)
- ANNorthRect &bnd_box) // bounding box
-{
- ANNkdStats ch_stats; // stats for children
- ANNorthRect inner_box(dim); // inner box of shrink
-
- annBnds2Box(bnd_box, // enclosing box
- dim, // dimension
- n_bnds, // number of bounds
- bnds, // bounds array
- inner_box); // inner box (modified)
- // get stats for inner child
- ch_stats.reset(); // reset
- child[ANN_IN]->getStats(dim, ch_stats, inner_box);
- st.merge(ch_stats); // merge them
- // get stats for outer child
- ch_stats.reset(); // reset
- child[ANN_OUT]->getStats(dim, ch_stats, bnd_box);
- st.merge(ch_stats); // merge them
-
- st.depth++; // increment depth
- st.n_shr++; // increment number of shrinks
-}
-
-//----------------------------------------------------------------------
-// bd-tree constructor
-// This is the main constructor for bd-trees given a set of points.
-// It first builds a skeleton kd-tree as a basis, then computes the
-// bounding box of the data points, and then invokes rbd_tree() to
-// actually build the tree, passing it the appropriate splitting
-// and shrinking information.
-//----------------------------------------------------------------------
-
-ANNkd_ptr rbd_tree( // recursive construction of bd-tree
- ANNpointArray pa, // point array
- ANNidxArray pidx, // point indices to store in subtree
- int n, // number of points
- int dim, // dimension of space
- int bsp, // bucket space
- ANNorthRect &bnd_box, // bounding box for current node
- ANNkd_splitter splitter, // splitting routine
- ANNshrinkRule shrink); // shrinking rule
-
-ANNbd_tree::ANNbd_tree( // construct from point array
- ANNpointArray pa, // point array (with at least n pts)
- int n, // number of points
- int dd, // dimension
- int bs, // bucket size
- ANNsplitRule split, // splitting rule
- ANNshrinkRule shrink) // shrinking rule
- : ANNkd_tree(n, dd, bs) // build skeleton base tree
-{
- pts = pa; // where the points are
- if (n == 0) return; // no points--no sweat
-
- ANNorthRect bnd_box(dd); // bounding box for points
- // construct bounding rectangle
- annEnclRect(pa, pidx, n, dd, bnd_box);
- // copy to tree structure
- bnd_box_lo = annCopyPt(dd, bnd_box.lo);
- bnd_box_hi = annCopyPt(dd, bnd_box.hi);
-
- switch (split) { // build by rule
- case ANN_KD_STD: // standard kd-splitting rule
- root = rbd_tree(pa, pidx, n, dd, bs, bnd_box, kd_split, shrink);
- break;
- case ANN_KD_MIDPT: // midpoint split
- root = rbd_tree(pa, pidx, n, dd, bs, bnd_box, midpt_split, shrink);
- break;
- case ANN_KD_SUGGEST: // best (in our opinion)
- case ANN_KD_SL_MIDPT: // sliding midpoint split
- root = rbd_tree(pa, pidx, n, dd, bs, bnd_box, sl_midpt_split, shrink);
- break;
- case ANN_KD_FAIR: // fair split
- root = rbd_tree(pa, pidx, n, dd, bs, bnd_box, fair_split, shrink);
- break;
- case ANN_KD_SL_FAIR: // sliding fair split
- root = rbd_tree(pa, pidx, n, dd, bs,
- bnd_box, sl_fair_split, shrink);
- break;
- default:
- annError("Illegal splitting method", ANNabort);
- }
-}
-
-//----------------------------------------------------------------------
-// Shrinking rules
-//----------------------------------------------------------------------
-
-enum ANNdecomp {SPLIT, SHRINK}; // decomposition methods
-
-//----------------------------------------------------------------------
-// trySimpleShrink - Attempt a simple shrink
-//
-// We compute the tight bounding box of the points, and compute
-// the 2*dim ``gaps'' between the sides of the tight box and the
-// bounding box. If any of the gaps is large enough relative to
-// the longest side of the tight bounding box, then we shrink
-// all sides whose gaps are large enough. (The reason for
-// comparing against the tight bounding box, is that after
-// shrinking the longest box size will decrease, and if we use
-// the standard bounding box, we may decide to shrink twice in
-// a row. Since the tight box is fixed, we cannot shrink twice
-// consecutively.)
-//----------------------------------------------------------------------
-const float BD_GAP_THRESH = 0.5; // gap threshold (must be < 1)
-const int BD_CT_THRESH = 2; // min number of shrink sides
-
-ANNdecomp trySimpleShrink( // try a simple shrink
- ANNpointArray pa, // point array
- ANNidxArray pidx, // point indices to store in subtree
- int n, // number of points
- int dim, // dimension of space
- const ANNorthRect &bnd_box, // current bounding box
- ANNorthRect &inner_box) // inner box if shrinking (returned)
-{
- int i;
- // compute tight bounding box
- annEnclRect(pa, pidx, n, dim, inner_box);
-
- ANNcoord max_length = 0; // find longest box side
- for (i = 0; i < dim; i++) {
- ANNcoord length = inner_box.hi[i] - inner_box.lo[i];
- if (length > max_length) {
- max_length = length;
- }
- }
-
- int shrink_ct = 0; // number of sides we shrunk
- for (i = 0; i < dim; i++) { // select which sides to shrink
- // gap between boxes
- ANNcoord gap_hi = bnd_box.hi[i] - inner_box.hi[i];
- // big enough gap to shrink?
- if (gap_hi < max_length*BD_GAP_THRESH)
- inner_box.hi[i] = bnd_box.hi[i]; // no - expand
- else shrink_ct++; // yes - shrink this side
-
- // repeat for high side
- ANNcoord gap_lo = inner_box.lo[i] - bnd_box.lo[i];
- if (gap_lo < max_length*BD_GAP_THRESH)
- inner_box.lo[i] = bnd_box.lo[i]; // no - expand
- else shrink_ct++; // yes - shrink this side
- }
-
- if (shrink_ct >= BD_CT_THRESH) // did we shrink enough sides?
- return SHRINK;
- else return SPLIT;
-}
-
-//----------------------------------------------------------------------
-// tryCentroidShrink - Attempt a centroid shrink
-//
-// We repeatedly apply the splitting rule, always to the larger subset
-// of points, until the number of points decreases by the constant
-// fraction BD_FRACTION. If this takes more than dim*BD_MAX_SPLIT_FAC
-// splits for this to happen, then we shrink to the final inner box
-// Otherwise we split.
-//----------------------------------------------------------------------
-
-const float BD_MAX_SPLIT_FAC = 0.5; // maximum number of splits allowed
-const float BD_FRACTION = 0.5; // ...to reduce points by this fraction
- // ...This must be < 1.
-
-ANNdecomp tryCentroidShrink( // try a centroid shrink
- ANNpointArray pa, // point array
- ANNidxArray pidx, // point indices to store in subtree
- int n, // number of points
- int dim, // dimension of space
- const ANNorthRect &bnd_box, // current bounding box
- ANNkd_splitter splitter, // splitting procedure
- ANNorthRect &inner_box) // inner box if shrinking (returned)
-{
- int n_sub = n; // number of points in subset
- int n_goal = (int) (n*BD_FRACTION); // number of point in goal
- int n_splits = 0; // number of splits needed
- // initialize inner box to bounding box
- annAssignRect(dim, inner_box, bnd_box);
-
- while (n_sub > n_goal) { // keep splitting until goal reached
- int cd; // cut dim from splitter (ignored)
- ANNcoord cv; // cut value from splitter (ignored)
- int n_lo; // number of points on low side
- // invoke splitting procedure
- (*splitter)(pa, pidx, inner_box, n_sub, dim, cd, cv, n_lo);
- n_splits++; // increment split count
-
- if (n_lo >= n_sub/2) { // most points on low side
- inner_box.hi[cd] = cv; // collapse high side
- n_sub = n_lo; // recurse on lower points
- }
- else { // most points on high side
- inner_box.lo[cd] = cv; // collapse low side
- pidx += n_lo; // recurse on higher points
- n_sub -= n_lo;
- }
- }
- if (n_splits > dim*BD_MAX_SPLIT_FAC)// took too many splits
- return SHRINK; // shrink to final subset
- else
- return SPLIT;
-}
-
-//----------------------------------------------------------------------
-// selectDecomp - select which decomposition to use
-//----------------------------------------------------------------------
-
-ANNdecomp selectDecomp( // select decomposition method
- ANNpointArray pa, // point array
- ANNidxArray pidx, // point indices to store in subtree
- int n, // number of points
- int dim, // dimension of space
- const ANNorthRect &bnd_box, // current bounding box
- ANNkd_splitter splitter, // splitting procedure
- ANNshrinkRule shrink, // shrinking rule
- ANNorthRect &inner_box) // inner box if shrinking (returned)
-{
- ANNdecomp decomp = SPLIT; // decomposition
-
- switch (shrink) { // check shrinking rule
- case ANN_BD_NONE: // no shrinking allowed
- decomp = SPLIT;
- break;
- case ANN_BD_SUGGEST: // author's suggestion
- case ANN_BD_SIMPLE: // simple shrink
- decomp = trySimpleShrink(
- pa, pidx, // points and indices
- n, dim, // number of points and dimension
- bnd_box, // current bounding box
- inner_box); // inner box if shrinking (returned)
- break;
- case ANN_BD_CENTROID: // centroid shrink
- decomp = tryCentroidShrink(
- pa, pidx, // points and indices
- n, dim, // number of points and dimension
- bnd_box, // current bounding box
- splitter, // splitting procedure
- inner_box); // inner box if shrinking (returned)
- break;
- default:
- annError("Illegal shrinking rule", ANNabort);
- }
- return decomp;
-}
-
-//----------------------------------------------------------------------
-// rbd_tree - recursive procedure to build a bd-tree
-//
-// This is analogous to rkd_tree, but for bd-trees. See the
-// procedure rkd_tree() in kd_split.cpp for more information.
-//
-// If the number of points falls below the bucket size, then a
-// leaf node is created for the points. Otherwise we invoke the
-// procedure selectDecomp() which determines whether we are to
-// split or shrink. If splitting is chosen, then we essentially
-// do exactly as rkd_tree() would, and invoke the specified
-// splitting procedure to the points. Otherwise, the selection
-// procedure returns a bounding box, from which we extract the
-// appropriate shrinking bounds, and create a shrinking node.
-// Finally the points are subdivided, and the procedure is
-// invoked recursively on the two subsets to form the children.
-//----------------------------------------------------------------------
-
-ANNkd_ptr rbd_tree( // recursive construction of bd-tree
- ANNpointArray pa, // point array
- ANNidxArray pidx, // point indices to store in subtree
- int n, // number of points
- int dim, // dimension of space
- int bsp, // bucket space
- ANNorthRect &bnd_box, // bounding box for current node
- ANNkd_splitter splitter, // splitting routine
- ANNshrinkRule shrink) // shrinking rule
-{
- ANNdecomp decomp; // decomposition method
-
- ANNorthRect inner_box(dim); // inner box (if shrinking)
-
- if (n <= bsp) { // n small, make a leaf node
- if (n == 0) // empty leaf node
- return KD_TRIVIAL; // return (canonical) empty leaf
- else // construct the node and return
- return new ANNkd_leaf(n, pidx);
- }
-
- decomp = selectDecomp( // select decomposition method
- pa, pidx, // points and indices
- n, dim, // number of points and dimension
- bnd_box, // current bounding box
- splitter, shrink, // splitting/shrinking methods
- inner_box); // inner box if shrinking (returned)
-
- if (decomp == SPLIT) { // split selected
- int cd; // cutting dimension
- ANNcoord cv; // cutting value
- int n_lo; // number on low side of cut
- // invoke splitting procedure
- (*splitter)(pa, pidx, bnd_box, n, dim, cd, cv, n_lo);
-
- ANNcoord lv = bnd_box.lo[cd]; // save bounds for cutting dimension
- ANNcoord hv = bnd_box.hi[cd];
-
- bnd_box.hi[cd] = cv; // modify bounds for left subtree
- ANNkd_ptr lo = rbd_tree( // build left subtree
- pa, pidx, n_lo, // ...from pidx[0..n_lo-1]
- dim, bsp, bnd_box, splitter, shrink);
- bnd_box.hi[cd] = hv; // restore bounds
-
- bnd_box.lo[cd] = cv; // modify bounds for right subtree
- ANNkd_ptr hi = rbd_tree( // build right subtree
- pa, pidx + n_lo, n-n_lo,// ...from pidx[n_lo..n-1]
- dim, bsp, bnd_box, splitter, shrink);
- bnd_box.lo[cd] = lv; // restore bounds
- // create the splitting node
- return new ANNkd_split(cd, cv, lv, hv, lo, hi);
- }
- else { // shrink selected
- int n_in; // number of points in box
- int n_bnds; // number of bounding sides
-
- annBoxSplit( // split points around inner box
- pa, // points to split
- pidx, // point indices
- n, // number of points
- dim, // dimension
- inner_box, // inner box
- n_in); // number of points inside (returned)
-
- ANNkd_ptr in = rbd_tree( // build inner subtree pidx[0..n_in-1]
- pa, pidx, n_in, dim, bsp, inner_box, splitter, shrink);
- ANNkd_ptr out = rbd_tree( // build outer subtree pidx[n_in..n]
- pa, pidx+n_in, n - n_in, dim, bsp, bnd_box, splitter, shrink);
-
- ANNorthHSArray bnds = NULL; // bounds (alloc in Box2Bnds and
- // ...freed in bd_shrink destroyer)
-
- annBox2Bnds( // convert inner box to bounds
- inner_box, // inner box
- bnd_box, // enclosing box
- dim, // dimension
- n_bnds, // number of bounds (returned)
- bnds); // bounds array (modified)
-
- // return shrinking node
- return new ANNbd_shrink(n_bnds, bnds, in, out);
- }
-}
-}