summaryrefslogtreecommitdiff
path: root/geom_bottleneck/bottleneck/src/ann/kd_search.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'geom_bottleneck/bottleneck/src/ann/kd_search.cpp')
-rw-r--r--geom_bottleneck/bottleneck/src/ann/kd_search.cpp298
1 files changed, 0 insertions, 298 deletions
diff --git a/geom_bottleneck/bottleneck/src/ann/kd_search.cpp b/geom_bottleneck/bottleneck/src/ann/kd_search.cpp
deleted file mode 100644
index f559eb9..0000000
--- a/geom_bottleneck/bottleneck/src/ann/kd_search.cpp
+++ /dev/null
@@ -1,298 +0,0 @@
-//----------------------------------------------------------------------
-// File: kd_search.cpp
-// Programmer: Sunil Arya and David Mount
-// Description: Standard kd-tree search
-// Last modified: 01/04/05 (Version 1.0)
-//----------------------------------------------------------------------
-// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and
-// David Mount. All Rights Reserved.
-//
-// This software and related documentation is part of the Approximate
-// Nearest Neighbor Library (ANN). This software is provided under
-// the provisions of the Lesser GNU Public License (LGPL). See the
-// file ../ReadMe.txt for further information.
-//
-// The University of Maryland (U.M.) and the authors make no
-// representations about the suitability or fitness of this software for
-// any purpose. It is provided "as is" without express or implied
-// warranty.
-//----------------------------------------------------------------------
-// History:
-// Revision 0.1 03/04/98
-// Initial release
-// Revision 1.0 04/01/05
-// Changed names LO, HI to ANN_LO, ANN_HI
-// --------------------------------------------------------------------
-// 2015 - modified by A. Nigmetov to support deletion of points
-//----------------------------------------------------------------------
-
-#include "kd_search.h" // kd-search declarations
-
-namespace geom_bt {
-//----------------------------------------------------------------------
-// Approximate nearest neighbor searching by kd-tree search
-// The kd-tree is searched for an approximate nearest neighbor.
-// The point is returned through one of the arguments, and the
-// distance returned is the squared distance to this point.
-//
-// The method used for searching the kd-tree is an approximate
-// adaptation of the search algorithm described by Friedman,
-// Bentley, and Finkel, ``An algorithm for finding best matches
-// in logarithmic expected time,'' ACM Transactions on Mathematical
-// Software, 3(3):209-226, 1977).
-//
-// The algorithm operates recursively. When first encountering a
-// node of the kd-tree we first visit the child which is closest to
-// the query point. On return, we decide whether we want to visit
-// the other child. If the box containing the other child exceeds
-// 1/(1+eps) times the current best distance, then we skip it (since
-// any point found in this child cannot be closer to the query point
-// by more than this factor.) Otherwise, we visit it recursively.
-// The distance between a box and the query point is computed exactly
-// (not approximated as is often done in kd-tree), using incremental
-// distance updates, as described by Arya and Mount in ``Algorithms
-// for fast vector quantization,'' Proc. of DCC '93: Data Compression
-// Conference, eds. J. A. Storer and M. Cohn, IEEE Press, 1993,
-// 381-390.
-//
-// The main entry points is annkSearch() which sets things up and
-// then call the recursive routine ann_search(). This is a recursive
-// routine which performs the processing for one node in the kd-tree.
-// There are two versions of this virtual procedure, one for splitting
-// nodes and one for leaves. When a splitting node is visited, we
-// determine which child to visit first (the closer one), and visit
-// the other child on return. When a leaf is visited, we compute
-// the distances to the points in the buckets, and update information
-// on the closest points.
-//
-// Some trickery is used to incrementally update the distance from
-// a kd-tree rectangle to the query point. This comes about from
-// the fact that which each successive split, only one component
-// (along the dimension that is split) of the squared distance to
-// the child rectangle is different from the squared distance to
-// the parent rectangle.
-//----------------------------------------------------------------------
-
-//----------------------------------------------------------------------
-// To keep argument lists short, a number of global variables
-// are maintained which are common to all the recursive calls.
-// These are given below.
-//----------------------------------------------------------------------
-
-int ANNkdDim; // dimension of space
-ANNpoint ANNkdQ; // query point
-double ANNkdMaxErr; // max tolerable squared error
-ANNpointArray ANNkdPts; // the points
-ANNmin_k *ANNkdPointMK; // set of k closest points
-
-//----------------------------------------------------------------------
-// annkSearch - search for the k nearest neighbors
-//----------------------------------------------------------------------
-
-void ANNkd_tree::annkSearch(
- ANNpoint q, // the query point
- int k, // number of near neighbors to return
- ANNidxArray nn_idx, // nearest neighbor indices (returned)
- ANNdistArray dd, // the approximate nearest neighbor
- double eps) // the error bound
-{
-
- ANNkdDim = dim; // copy arguments to static equivs
- ANNkdQ = q;
- ANNkdPts = pts;
- ANNptsVisited = 0; // initialize count of points visited
-
- if (k > actual_num_points) { // too many near neighbors?
- annError("Requesting more near neighbors than data points", ANNabort);
- }
-
- ANNkdMaxErr = ANN_POW(1.0 + eps);
- ANN_FLOP(2) // increment floating op count
-
- ANNkdPointMK = new ANNmin_k(k); // create set for closest k points
- // search starting at the root
- root->ann_search(annBoxDistance(q, bnd_box_lo, bnd_box_hi, dim));
-
- for (int i = 0; i < k; i++) { // extract the k-th closest points
- dd[i] = ANNkdPointMK->ith_smallest_key(i);
- nn_idx[i] = ANNkdPointMK->ith_smallest_info(i);
- }
- delete ANNkdPointMK; // deallocate closest point set
-}
-
-//----------------------------------------------------------------------
-// kd_split::ann_search - search a splitting node
-//----------------------------------------------------------------------
-
-void ANNkd_split::ann_search(ANNdist box_dist)
-{
- // check if the subtree is empty
- if (0 == actual_num_points) return;
- // check dist calc term condition
- if (ANNmaxPtsVisited != 0 && ANNptsVisited > ANNmaxPtsVisited) return;
-
- // distance to cutting plane
- ANNcoord cut_diff = ANNkdQ[cut_dim] - cut_val;
-
- if (cut_diff < 0) { // left of cutting plane
- child[ANN_LO]->ann_search(box_dist);// visit closer child first
-
- ANNcoord box_diff = cd_bnds[ANN_LO] - ANNkdQ[cut_dim];
- if (box_diff < 0) // within bounds - ignore
- box_diff = 0;
- // distance to further box
- box_dist = (ANNdist) ANN_SUM(box_dist,
- ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff)));
-
- // visit further child if close enough
- if (box_dist * ANNkdMaxErr < ANNkdPointMK->max_key())
- child[ANN_HI]->ann_search(box_dist);
-
- }
- else { // right of cutting plane
- child[ANN_HI]->ann_search(box_dist);// visit closer child first
-
- ANNcoord box_diff = ANNkdQ[cut_dim] - cd_bnds[ANN_HI];
- if (box_diff < 0) // within bounds - ignore
- box_diff = 0;
- // distance to further box
- box_dist = (ANNdist) ANN_SUM(box_dist,
- ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff)));
-
- // visit further child if close enough
- if (box_dist * ANNkdMaxErr < ANNkdPointMK->max_key())
- child[ANN_LO]->ann_search(box_dist);
-
- }
- ANN_FLOP(10) // increment floating ops
- ANN_SPL(1) // one more splitting node visited
-}
-
-//----------------------------------------------------------------------
-// kd_leaf::ann_search - search points in a leaf node
-// Note: The unreadability of this code is the result of
-// some fine tuning to replace indexing by pointer operations.
-//----------------------------------------------------------------------
-
-void ANNkd_leaf::ann_search(ANNdist box_dist)
-{
- register ANNdist dist; // distance to data point
- register ANNcoord* pp; // data coordinate pointer
- register ANNcoord* qq; // query coordinate pointer
- register ANNdist min_dist; // distance to k-th closest point
- register ANNcoord t;
- register int d;
-
- min_dist = ANNkdPointMK->max_key(); // k-th smallest distance so far
-
- for (int i = 0; i < n_pts; i++) { // check points in bucket
-
- pp = ANNkdPts[bkt[i]]; // first coord of next data point
- qq = ANNkdQ; // first coord of query point
- dist = 0;
-
- for(d = 0; d < ANNkdDim; d++) {
- ANN_COORD(1) // one more coordinate hit
- ANN_FLOP(4) // increment floating ops
-
- t = *(qq++) - *(pp++); // compute length and adv coordinate
- // exceeds dist to k-th smallest?
- if( (dist = ANN_SUM(dist, ANN_POW(t))) > min_dist) {
- break;
- }
- }
-
- if (d >= ANNkdDim && // among the k best?
- (ANN_ALLOW_SELF_MATCH || dist!=0)) { // and no self-match problem
- // add it to the list
- ANNkdPointMK->insert(dist, bkt[i]);
- min_dist = ANNkdPointMK->max_key();
- }
- }
- ANN_LEAF(1) // one more leaf node visited
- ANN_PTS(n_pts) // increment points visited
- ANNptsVisited += n_pts; // increment number of points visited
-}
-
-
-
-////////////////////////////////////////////////
-// range search
-// ////////////////////////////////////////////
-
-void ANNkd_tree::range_search(const ANNorthRect& region,
- std::vector<size_t>& point_indices)
-{
-
- // get bounding box of the root
- ANNorthRect bnd_box = ANNorthRect(dim, bnd_box_lo, bnd_box_hi);
- root->range_search(region, dim, pts, bnd_box, point_indices);
-}
-
-void ANNkd_split::range_search(const ANNorthRect& region,
- int ANNkdDim,
- ANNpointArray ANNkdPts,
- ANNorthRect& bnd_box,
- std::vector<size_t>& point_indices)
-{
- // check if the subtree is empty
- if (0 == actual_num_points) return;
-
- // process left child
- ANNcoord old_bnd_box_val = bnd_box.hi[cut_dim];
- bnd_box.hi[cut_dim] = cut_val;
- if (region.contains(ANNkdDim, bnd_box)) {
- child[ANN_LO]->range_search_add(point_indices);
- } else if (region.intersects(ANNkdDim, bnd_box)) {
- child[ANN_LO]->range_search(region, ANNkdDim, ANNkdPts, bnd_box, point_indices);
- }
- // restore bounding box
- bnd_box.hi[cut_dim] = old_bnd_box_val;
- // process right child
- old_bnd_box_val = bnd_box.lo[cut_dim];
- bnd_box.lo[cut_dim] = cut_val;
- if (region.contains(ANNkdDim, bnd_box)) {
- child[ANN_HI]->range_search_add(point_indices);
- } else if (region.intersects(ANNkdDim, bnd_box)) {
- child[ANN_HI]->range_search(region, ANNkdDim, ANNkdPts, bnd_box, point_indices);
- }
- // restore bounding box
- bnd_box.lo[cut_dim] = old_bnd_box_val;
-}
-
-void ANNkd_leaf::range_search(const ANNorthRect& region,
- int ANNkdDim,
- ANNpointArray ANNkdPts,
- ANNorthRect&, // nameless parameter to suppress
- // warnings and allow recursion
- // in splitting node
- std::vector<size_t>& point_indices)
-{
- for (int i = 0; i < n_pts; i++) { // check points in bucket
- if (region.inside(ANNkdDim, ANNkdPts[bkt[i]]) == ANNtrue) {
- //std::cout << "adding point, i = " << i;
- //std::cout << ", x = " << ANNkdPts[bkt[i]][0];
- //std::cout << ", y = " << ANNkdPts[bkt[i]][1] << std::endl;
- point_indices.push_back(bkt[i]);
- }
- }
-}
-
-void ANNkd_split::range_search_add(std::vector<size_t>& point_indices)
-{
- if ( 0 == actual_num_points )
- return;
- child[ANN_LO]->range_search_add(point_indices);
- child[ANN_HI]->range_search_add(point_indices);
-}
-
-void ANNkd_leaf::range_search_add(std::vector<size_t>& point_indices)
-{
- if ( 0 == actual_num_points )
- return;
- for (int i = 0; i < n_pts; i++) { // add all points in a bucket
- //std::cout << "adding point without checking, i = " << i <<", bkt[i] = " << bkt[i] << std::endl;
- point_indices.push_back(bkt[i]);
- }
-}
-}