summaryrefslogtreecommitdiff
path: root/geom_bottleneck/bottleneck/src/ann/kd_tree.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'geom_bottleneck/bottleneck/src/ann/kd_tree.cpp')
-rw-r--r--geom_bottleneck/bottleneck/src/ann/kd_tree.cpp566
1 files changed, 0 insertions, 566 deletions
diff --git a/geom_bottleneck/bottleneck/src/ann/kd_tree.cpp b/geom_bottleneck/bottleneck/src/ann/kd_tree.cpp
deleted file mode 100644
index e8f7f63..0000000
--- a/geom_bottleneck/bottleneck/src/ann/kd_tree.cpp
+++ /dev/null
@@ -1,566 +0,0 @@
-//----------------------------------------------------------------------
-// File: kd_tree.cpp
-// Programmer: Sunil Arya and David Mount
-// Description: Basic methods for kd-trees.
-// Last modified: 01/04/05 (Version 1.0)
-//----------------------------------------------------------------------
-// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and
-// David Mount. All Rights Reserved.
-//
-// This software and related documentation is part of the Approximate
-// Nearest Neighbor Library (ANN). This software is provided under
-// the provisions of the Lesser GNU Public License (LGPL). See the
-// file ../ReadMe.txt for further information.
-//
-// The University of Maryland (U.M.) and the authors make no
-// representations about the suitability or fitness of this software for
-// any purpose. It is provided "as is" without express or implied
-// warranty.
-//----------------------------------------------------------------------
-// History:
-// Revision 0.1 03/04/98
-// Initial release
-// Revision 1.0 04/01/05
-// Increased aspect ratio bound (ANN_AR_TOOBIG) from 100 to 1000.
-// Fixed leaf counts to count trivial leaves.
-// Added optional pa, pi arguments to Skeleton kd_tree constructor
-// for use in load constructor.
-// Added annClose() to eliminate KD_TRIVIAL memory leak.
-// --------------------------------------------------------------------
-// 2015 - modified by A. Nigmetov to support deletion of points
-//----------------------------------------------------------------------
-
-#ifdef _WIN32
-#include <ciso646> // make VS more conformal
-#endif
-
-#include "kd_tree.h" // kd-tree declarations
-#include "kd_split.h" // kd-tree splitting rules
-#include "kd_util.h" // kd-tree utilities
-#include <ANN/ANNperf.h> // performance evaluation
-#include "def_debug_bt.h"
-
-namespace geom_bt {
-//----------------------------------------------------------------------
-// Global data
-//
-// For some splitting rules, especially with small bucket sizes,
-// it is possible to generate a large number of empty leaf nodes.
-// To save storage we allocate a single trivial leaf node which
-// contains no points. For messy coding reasons it is convenient
-// to have it reference a trivial point index.
-//
-// KD_TRIVIAL is allocated when the first kd-tree is created. It
-// must *never* deallocated (since it may be shared by more than
-// one tree).
-//----------------------------------------------------------------------
-static int IDX_TRIVIAL[] = {0}; // trivial point index
-ANNkd_leaf *KD_TRIVIAL = NULL; // trivial leaf node
-
-//----------------------------------------------------------------------
-// Printing the kd-tree
-// These routines print a kd-tree in reverse inorder (high then
-// root then low). (This is so that if you look at the output
-// from the right side it appear from left to right in standard
-// inorder.) When outputting leaves we output only the point
-// indices rather than the point coordinates. There is an option
-// to print the point coordinates separately.
-//
-// The tree printing routine calls the printing routines on the
-// individual nodes of the tree, passing in the level or depth
-// in the tree. The level in the tree is used to print indentation
-// for readability.
-//----------------------------------------------------------------------
-
-void ANNkd_split::print( // print splitting node
- int level, // depth of node in tree
- ostream &out) // output stream
-{
-#ifndef FOR_R_TDA
- child[ANN_HI]->print(level+1, out); // print high child
- out << " ";
- for (int i = 0; i < level; i++) // print indentation
- out << "..";
- out << "Split cd=" << cut_dim << " cv=" << cut_val;
- out << " lbnd=" << cd_bnds[ANN_LO];
- out << " hbnd=" << cd_bnds[ANN_HI];
- out << " np=" << actual_num_points;
- out << "\n";
- child[ANN_LO]->print(level+1, out); // print low child
-#endif
-}
-
-void ANNkd_leaf::print( // print leaf node
- int level, // depth of node in tree
- ostream &out) // output stream
-{
-#ifndef FOR_R_TDA
- out << " ";
- for (int i = 0; i < level; i++) // print indentation
- out << "..";
-
- if (this == KD_TRIVIAL) { // canonical trivial leaf node
- out << "Leaf (trivial)\n";
- }
- else{
- out << "Leaf n=" << n_pts << " <";
- for (int j = 0; j < n_pts; j++) {
- out << bkt[j];
- if (j < n_pts-1) out << ",";
- }
- out << ">\n";
- }
-#endif
-}
-
-#ifndef FOR_R_TDA
-void ANNkd_tree::Print( // print entire tree
- ANNbool with_pts, // print points as well?
- ostream &out) // output stream
-{
- out << "ANN Version " << ANNversion << "\n";
- if (with_pts) { // print point coordinates
- out << " Points:\n";
- for (int i = 0; i < n_pts; i++) {
- out << "\t" << i << ": ";
- annPrintPt(pts[i], dim, out);
- out << "\n";
- }
- }
- if (root == NULL) // empty tree?
- out << " Null tree.\n";
- else {
- root->print(0, out); // invoke printing at root
- }
-}
-#endif
-
-//----------------------------------------------------------------------
-// kd_tree statistics (for performance evaluation)
-// This routine compute various statistics information for
-// a kd-tree. It is used by the implementors for performance
-// evaluation of the data structure.
-//----------------------------------------------------------------------
-
-#define MAX(a,b) ((a) > (b) ? (a) : (b))
-
-void ANNkdStats::merge(const ANNkdStats &st) // merge stats from child
-{
- n_lf += st.n_lf; n_tl += st.n_tl;
- n_spl += st.n_spl; n_shr += st.n_shr;
- depth = MAX(depth, st.depth);
- sum_ar += st.sum_ar;
-}
-
-//----------------------------------------------------------------------
-// Update statistics for nodes
-//----------------------------------------------------------------------
-
-const double ANN_AR_TOOBIG = 1000; // too big an aspect ratio
-
-void ANNkd_leaf::getStats( // get subtree statistics
- int dim, // dimension of space
- ANNkdStats &st, // stats (modified)
- ANNorthRect &bnd_box) // bounding box
-{
- st.reset();
- st.n_lf = 1; // count this leaf
- if (this == KD_TRIVIAL) st.n_tl = 1; // count trivial leaf
- double ar = annAspectRatio(dim, bnd_box); // aspect ratio of leaf
- // incr sum (ignore outliers)
- st.sum_ar += float(ar < ANN_AR_TOOBIG ? ar : ANN_AR_TOOBIG);
-}
-
-void ANNkd_split::getStats( // get subtree statistics
- int dim, // dimension of space
- ANNkdStats &st, // stats (modified)
- ANNorthRect &bnd_box) // bounding box
-{
- ANNkdStats ch_stats; // stats for children
- // get stats for low child
- ANNcoord hv = bnd_box.hi[cut_dim]; // save box bounds
- bnd_box.hi[cut_dim] = cut_val; // upper bound for low child
- ch_stats.reset(); // reset
- child[ANN_LO]->getStats(dim, ch_stats, bnd_box);
- st.merge(ch_stats); // merge them
- bnd_box.hi[cut_dim] = hv; // restore bound
- // get stats for high child
- ANNcoord lv = bnd_box.lo[cut_dim]; // save box bounds
- bnd_box.lo[cut_dim] = cut_val; // lower bound for high child
- ch_stats.reset(); // reset
- child[ANN_HI]->getStats(dim, ch_stats, bnd_box);
- st.merge(ch_stats); // merge them
- bnd_box.lo[cut_dim] = lv; // restore bound
-
- st.depth++; // increment depth
- st.n_spl++; // increment number of splits
-}
-
-//----------------------------------------------------------------------
-// getStats
-// Collects a number of statistics related to kd_tree or
-// bd_tree.
-//----------------------------------------------------------------------
-
-void ANNkd_tree::getStats( // get tree statistics
- ANNkdStats &st) // stats (modified)
-{
- st.reset(dim, n_pts, bkt_size); // reset stats
- // create bounding box
- ANNorthRect bnd_box(dim, bnd_box_lo, bnd_box_hi);
- if (root != NULL) { // if nonempty tree
- root->getStats(dim, st, bnd_box); // get statistics
- st.avg_ar = st.sum_ar / st.n_lf; // average leaf asp ratio
- }
-}
-
-//----------------------------------------------------------------------
-// kd_tree destructor
-// The destructor just frees the various elements that were
-// allocated in the construction process.
-//----------------------------------------------------------------------
-
-ANNkd_tree::~ANNkd_tree() // tree destructor
-{
- if (root != NULL and root != KD_TRIVIAL) delete root;
- if (pidx != NULL) delete [] pidx;
- if (bnd_box_lo != NULL) annDeallocPt(bnd_box_lo);
- if (bnd_box_hi != NULL) annDeallocPt(bnd_box_hi);
-}
-
-//----------------------------------------------------------------------
-// This is called with all use of ANN is finished. It eliminates the
-// minor memory leak caused by the allocation of KD_TRIVIAL.
-//----------------------------------------------------------------------
-void annClose() // close use of ANN
-{
- if (KD_TRIVIAL != NULL) {
- delete KD_TRIVIAL;
- KD_TRIVIAL = NULL;
- }
-}
-
-//----------------------------------------------------------------------
-// kd_tree constructors
-// There is a skeleton kd-tree constructor which sets up a
-// trivial empty tree. The last optional argument allows
-// the routine to be passed a point index array which is
-// assumed to be of the proper size (n). Otherwise, one is
-// allocated and initialized to the identity. Warning: In
-// either case the destructor will deallocate this array.
-//
-// As a kludge, we need to allocate KD_TRIVIAL if one has not
-// already been allocated. (This is because I'm too dumb to
-// figure out how to cause a pointer to be allocated at load
-// time.)
-//----------------------------------------------------------------------
-
-void ANNkd_tree::SkeletonTree( // construct skeleton tree
- int n, // number of points
- int dd, // dimension
- int bs, // bucket size
- ANNpointArray pa, // point array
- ANNidxArray pi) // point indices
-{
- dim = dd; // initialize basic elements
- n_pts = n;
- bkt_size = bs;
- pts = pa; // initialize points array
-
- root = NULL; // no associated tree yet
-
- if (pi == NULL) { // point indices provided?
- pidx = new ANNidx[n]; // no, allocate space for point indices
- for (int i = 0; i < n; i++) {
- pidx[i] = i; // initially identity
- }
- }
- else {
- pidx = pi; // yes, use them
- }
-
- bnd_box_lo = bnd_box_hi = NULL; // bounding box is nonexistent
- if (KD_TRIVIAL == NULL) // no trivial leaf node yet?
- KD_TRIVIAL = new ANNkd_leaf(0, IDX_TRIVIAL); // allocate it
-
- // for deletion
- pointToLeafVec.clear();
- pointToLeafVec.reserve(n_pts);
- for(int k = 0; k < n_pts; ++k) {
- pointToLeafVec.push_back(NULL);
- }
-}
-
-ANNkd_tree::ANNkd_tree( // basic constructor
- int n, // number of points
- int dd, // dimension
- int bs) // bucket size
-{ SkeletonTree(n, dd, bs); } // construct skeleton tree
-
-
-
-//----------------------------------------------------------------------
-// rkd_tree - recursive procedure to build a kd-tree
-//
-// Builds a kd-tree for points in pa as indexed through the
-// array pidx[0..n-1] (typically a subarray of the array used in
-// the top-level call). This routine permutes the array pidx,
-// but does not alter pa[].
-//
-// The construction is based on a standard algorithm for constructing
-// the kd-tree (see Friedman, Bentley, and Finkel, ``An algorithm for
-// finding best matches in logarithmic expected time,'' ACM Transactions
-// on Mathematical Software, 3(3):209-226, 1977). The procedure
-// operates by a simple divide-and-conquer strategy, which determines
-// an appropriate orthogonal cutting plane (see below), and splits
-// the points. When the number of points falls below the bucket size,
-// we simply store the points in a leaf node's bucket.
-//
-// One of the arguments is a pointer to a splitting routine,
-// whose prototype is:
-//
-// void split(
-// ANNpointArray pa, // complete point array
-// ANNidxArray pidx, // point array (permuted on return)
-// ANNorthRect &bnds, // bounds of current cell
-// int n, // number of points
-// int dim, // dimension of space
-// int &cut_dim, // cutting dimension
-// ANNcoord &cut_val, // cutting value
-// int &n_lo) // no. of points on low side of cut
-//
-// This procedure selects a cutting dimension and cutting value,
-// partitions pa about these values, and returns the number of
-// points on the low side of the cut.
-//----------------------------------------------------------------------
-
-ANNkd_ptr rkd_tree( // recursive construction of kd-tree
- ANNpointArray pa, // point array
- ANNidxArray pidx, // point indices to store in subtree
- int n, // number of points
- int dim, // dimension of space
- int bsp, // bucket space
- ANNorthRect &bnd_box, // bounding box for current node
- ANNkd_splitter splitter, // splitting routine
- vector<ANNkd_leaf*>* ppointToLeafVec)
-{
- if (n <= bsp) { // n small, make a leaf node
- if (n == 0) // empty leaf node
- return KD_TRIVIAL; // return (canonical) empty leaf
- else { // construct the node and return
- ANNkd_leaf* res = new ANNkd_leaf(n, pidx);
- if ( 1 == bsp) {
- (*ppointToLeafVec)[*pidx] = res;
- }
- return res;
- }
- }
- else { // n large, make a splitting node
- int cd; // cutting dimension
- ANNcoord cv; // cutting value
- int n_lo; // number on low side of cut
- ANNkd_node *lo, *hi; // low and high children
-
- // invoke splitting procedure
- (*splitter)(pa, pidx, bnd_box, n, dim, cd, cv, n_lo);
-
- ANNcoord lv = bnd_box.lo[cd]; // save bounds for cutting dimension
- ANNcoord hv = bnd_box.hi[cd];
-
- bnd_box.hi[cd] = cv; // modify bounds for left subtree
- lo = rkd_tree( // build left subtree
- pa, pidx, n_lo, // ...from pidx[0..n_lo-1]
- dim, bsp, bnd_box, splitter, ppointToLeafVec);
- bnd_box.hi[cd] = hv; // restore bounds
-
- bnd_box.lo[cd] = cv; // modify bounds for right subtree
- hi = rkd_tree( // build right subtree
- pa, pidx + n_lo, n-n_lo,// ...from pidx[n_lo..n-1]
- dim, bsp, bnd_box, splitter, ppointToLeafVec);
- bnd_box.lo[cd] = lv; // restore bounds
-
- // create the splitting node
- ANNkd_split *ptr = new ANNkd_split(cd, cv, lv, hv, lo, hi);
- if (lo != KD_TRIVIAL)
- lo->setParent(ptr);
- if (hi != KD_TRIVIAL)
- hi->setParent(ptr);
- ptr->setNumPoints(lo->getNumPoints() + hi->getNumPoints());
-
- return ptr; // return pointer to this node
- }
-}
-
-// for kd-trees with deletion
-/*
-ANNkd_ptr rkd_tree_wd( // recursive construction of kd-tree
- ANNpointArray pa, // point array
- ANNidxArray pidx, // point indices to store in subtree
- int n, // number of points
- int dim, // dimension of space
- int bsp, // bucket space
- ANNorthRect &bnd_box, // bounding box for current node
- ANNkd_splitter_wd splitter) // splitting routine
-{
- ANNidx cut_pt_idx;
- if (n <= bsp) { // n small, make a leaf node
- if (n == 0) // empty leaf node
- return KD_TRIVIAL; // return (canonical) empty leaf
- else // construct the node and return
- return new ANNkd_leaf(n, pidx);
- }
- else { // n large, make a splitting node
- int cd; // cutting dimension
- ANNcoord cv; // cutting value
- int n_lo; // number on low side of cut
- ANNkd_node *lo, *hi; // low and high children
-
- // invoke splitting procedure
- (*splitter)(pa, pidx, bnd_box, n, dim, cd, cv, n_lo, cut_pt_idx);
-
- ANNcoord lv = bnd_box.lo[cd]; // save bounds for cutting dimension
- ANNcoord hv = bnd_box.hi[cd];
-
- bnd_box.hi[cd] = cv; // modify bounds for left subtree
- lo = rkd_tree_wd( // build left subtree
- pa, pidx, n_lo, // ...from pidx[0..n_lo-1]
- dim, bsp, bnd_box, splitter);
- bnd_box.hi[cd] = hv; // restore bounds
-
- bnd_box.lo[cd] = cv; // modify bounds for right subtree
- hi = rkd_tree_wd( // build right subtree
- pa, pidx + n_lo, n-n_lo,// ...from pidx[n_lo..n-1]
- dim, bsp, bnd_box, splitter);
- bnd_box.lo[cd] = lv; // restore bounds
-
- // create the splitting node
- ANNkd_split *ptr = new ANNkd_split(cd, cv, lv, hv, lo, hi, cut_pt_idx);
-
- return ptr; // return pointer to this node
- }
-}
-*/
-
-//----------------------------------------------------------------------
-// kd-tree constructor
-// This is the main constructor for kd-trees given a set of points.
-// It first builds a skeleton tree, then computes the bounding box
-// of the data points, and then invokes rkd_tree() to actually
-// build the tree, passing it the appropriate splitting routine.
-//----------------------------------------------------------------------
-
-ANNkd_tree::ANNkd_tree( // construct from point array
- ANNpointArray pa, // point array (with at least n pts)
- int n, // number of points
- int dd, // dimension
- int bs, // bucket size
- ANNsplitRule split) // splitting method
-{
- SkeletonTree(n, dd, bs); // set up the basic stuff
- pts = pa; // where the points are
- actual_num_points = n;
- if (n == 0) return; // no points--no sweat
-
- ANNorthRect bnd_box(dd); // bounding box for points
- annEnclRect(pa, pidx, n, dd, bnd_box);// construct bounding rectangle
- // copy to tree structure
- bnd_box_lo = annCopyPt(dd, bnd_box.lo);
- bnd_box_hi = annCopyPt(dd, bnd_box.hi);
-
- switch (split) { // build by rule
- case ANN_KD_STD: // standard kd-splitting rule
- root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, kd_split, &pointToLeafVec);
- break;
- case ANN_KD_MIDPT: // midpoint split
- root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, midpt_split, &pointToLeafVec);
- break;
- case ANN_KD_FAIR: // fair split
- root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, fair_split, &pointToLeafVec);
- break;
- case ANN_KD_SUGGEST: // best (in our opinion)
- case ANN_KD_SL_MIDPT: // sliding midpoint split
- root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, sl_midpt_split, &pointToLeafVec);
- break;
- case ANN_KD_SL_FAIR: // sliding fair split
- root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, sl_fair_split, &pointToLeafVec);
- break;
- // for kd-trees with deletion
- /*
- //case ANN_KD_SUGGEST:
- case ANN_KD_STD_WD:
- root = rkd_tree_wd(pa, pidx, n, dd, bs, bnd_box, kd_split_wd);
- break;
- case ANN_KD_MIDPT_WD:
- root = rkd_tree_wd(pa, pidx, n, dd, bs, bnd_box, kd_split_wd);
- break;
- case ANN_KD_SL_MIDPT_WD:
- root = rkd_tree_wd(pa, pidx, n, dd, bs, bnd_box, kd_split_wd);
- break;
- */
- default:
- annError("Illegal splitting method", ANNabort);
- }
-}
-
-
-// deletion code
-//
-//
-//
-//
-//
-void ANNkd_tree::delete_point(const int point_idx)
-{
- // range check
- assert(0 <= point_idx and point_idx < n_pts);
- assert(actual_num_points > 0);
- // if this is the first deletion,
- // initialize isDeleted vector
- if (isDeleted.empty()) {
- isDeleted.reserve(n_pts);
- for(size_t k = 0; k < n_pts; ++k) {
- isDeleted.push_back(false);
- }
- }
- // points shouldn't be deleted twice
- assert(!isDeleted[point_idx]);
- assert(root != NULL);
- ANNkd_leaf* leafWithPoint = pointToLeafVec.at(point_idx);
- assert(leafWithPoint != NULL);
- // if leafWithPoint != root,
- // its parent will delete the leaf
- pointToLeafVec.at(point_idx)->delete_point(point_idx, leafWithPoint != root);
- if (leafWithPoint == root) {
- // we had only one point,
- // so the tree must delete it
- root = KD_TRIVIAL;
- delete leafWithPoint;
- }
- isDeleted[point_idx] = true;
- actual_num_points--;
-}
-
-void ANNkd_leaf::delete_point(const int point_idx, const bool killYourself)
-{
- assert(n_pts == 1);
- assert(bkt[0] == point_idx);
- ANNkd_split* myPar = parent;
- while(myPar != NULL) {
- myPar->decNumPoints();
- myPar = myPar->getParent();
- }
- if (parent != NULL)
- parent->delete_leaf(this);
- if (killYourself)
- delete this;
-}
-
-void ANNkd_split::delete_leaf(ANNkd_leaf* childToDelete)
-{
- assert(child[ANN_LO] == childToDelete or child[ANN_HI] == childToDelete);
- if (child[ANN_LO] == childToDelete)
- child[ANN_LO] = KD_TRIVIAL;
- else
- child[ANN_HI] = KD_TRIVIAL;
-}
-}