summaryrefslogtreecommitdiff
path: root/phstuff/diphawrapper.py
blob: ac3983f9e30262f7877bf3acbc89a4a2c50e846d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# -*- coding: utf-8 -*-

import struct
import numpy as np
import multiprocessing # To get CPU count.
import os
import tempfile
import subprocess

import phstuff.barcode as bc

# FIXME, TODO: These magic numbers should really be read from the
# DIPHA header files.
DIPHA_MAGIC = 8067171840
DIPHA_WEIGHTED_BOUNDARY_MATRIX = 0
DIPHA_PERSISTENCE_DIAGRAM = 2
DIPHA_DISTANCE_MATRIX = 7
DIPHA_SPARSE_DISTANCE_MATRIX = 8


def save_weight_matrix(fname, weights):
    """Write a NumPy weight matrix to a DIPHA full distance matrix
    file. Attention: DIPHA uses a convention wherein an edge's
    filtration value is *half* its weight. This function compensates
    by multiplying every weight by 2. Pay attention in case DIPHA's
    behavior changes in the future!

    Parameters:
    -----------

    fname: Name of file to write.

    weights: NumPy array. Elements will be converted to IEEE-754
       doubles and used as weights. The entire array is passed on to
       DIPHA, whose behvior is undefined if it's not symmetric.

    """

    # override_dipha_half: DIPHA currently (commit 0081862) divides all
    #    entries by 2 when loading the file. If this argument is `True`,
    #    we compensate by multiplying all entries by 2. Be sure to pay
    #    attention if DIPHA's behavior changes!

    factor = 2.0
    
    m = weights.shape[0]
    if weights.shape[0] != weights.shape[1]:
        raise ValueError("Matrix is not square.")

    with open(fname, "wb") as f:
        f.write(struct.pack("<q", DIPHA_MAGIC))
        f.write(struct.pack("<q", DIPHA_DISTANCE_MATRIX))
        f.write(struct.pack("<q", m))

        # Why write in a loop? I heard rumors that struct.pack will
        # allocate a lot of temporary heap space if given lots of
        # data. I haven't actually tested.
        for i in range(0, m):
            for j in range(0, m):
                f.write(struct.pack("<d", factor*weights[i,j]))

def save_masked_weight_matrix(fname, weights):
    """Write a masked NumPy weight matrix to a DIPHA sparse distance
    matrix file, keeping edges only for unmasked entries. Attention:
    DIPHA uses a convention wherein an edge's filtration value is
    *half* its weight. This function compensates by multiplying every
    weight by 2. Pay attention in case DIPHA's behavior changes in the
    future!

    Parameters:
    -----------

    fname: Name of file to write.

    weights: Masked NumPy array. Unmasked elements will be converted
       to IEEE-754 and used as weights. Must be symmetric (not
       checked).

    """

    factor = 2.0

    n = weights.shape[1]

    with open(fname, "wb") as f:
        f.write(struct.pack("<q", DIPHA_MAGIC))
        f.write(struct.pack("<q", DIPHA_SPARSE_DISTANCE_MATRIX))
        f.write(struct.pack("<q", n))

        for i in range(0, n):
            f.write(struct.pack('<q', n - np.sum(weights.mask[i, :])))
        for i in range(0, n):
            for j in np.arange(0, n)[-(weights.mask[i, :])]:
                    f.write(struct.pack('<q', j))
        for i in range(0, n):
            for j in np.arange(0, n)[-(weights.mask[i, :])]:
                    f.write(struct.pack('<d', factor*weights[i, j]))
    


def save_edge_list(fname, edge_list):
    """Write a possibly non-complete weighted graph represented as an edge
    list to a DIPHA sparse distance file. Attention: DIPHA uses a
    convention wherein an edge's filtration value is *half* its
    weight. This function compensates by multiplying every weight by
    2. Pay attention in case DIPHA's behavior changes in the future!

    Parameters:
    -----------

    fname: Name of file to write.

    edge_list: A list of the edges and weights of each node, in node
       order. If node `i` has edges to nodes `a_{i,0}, …¸ a_{i,k_i}`
       with weights `w_{i,0}, …, w_{i,k_i}`, then this argument should
       be

          `[[(a_{0,0}, w_{0,0}), …, (a_{0,k_0}, w_{0,k_0})],
            [(a_{1,0}, w_{1,0}), …, (a_{1,k_1}, w_{1,k_1})], 
            …, 
            [(a_{n,0}, w_{n,0}), …, (a_{n,k_n}, w_{n,k_n})]]`

       Remember that an isolated node corresponds to an empty (inner)
       list.

    """

    factor = 2.0
    
    n = len(edge_list)

    with open(fname, "wb") as f:
        f.write(struct.pack("<q", DIPHA_MAGIC))
        f.write(struct.pack("<q", DIPHA_SPARSE_DISTANCE_MATRIX))
        f.write(struct.pack("<q", n))

        for i in range(0, n):
            f.write(struct.pack('<q', len(edge_list[i])))
        for i in range(0, n):
            for j in range(0, len(edge_list[i])):
                f.write(struct.pack('<q', edge_list[i][j][0]))
        for i in range(0, n):
            for j in range(0, len(edge_list[i])):
                f.write(struct.pack('<d', factor*edge_list[i][j][1]))


def load_barcode(fname, top_dim = None):
    ret = dict()
    
    with open(fname, "rb") as f:
        if struct.unpack('<q', f.read(8))[0] != DIPHA_MAGIC:
            raise IOError("File %s is not a valid DIPHA file." %(fname))
        if struct.unpack('<q', f.read(8))[0] != DIPHA_PERSISTENCE_DIAGRAM:
            raise IOError("File %s is not a valid DIPHA barcode file." %(fname))

        n = struct.unpack('<q', f.read(8))[0]
        
        for i in range(0, n):
            (d, birth, death) = struct.unpack('<qdd', f.read(3*8))
            if d < 0:
                dim = -d -1
            else:
                dim = d

            if top_dim is None or dim <= top_dim:
                if d < 0:
                    ret.setdefault(dim, []).append(bc.Interval(birth))
                else:
                    ret.setdefault(dim, []).append(bc.Interval(birth, death))

    return ret

def save_text_barcode(fname, barcode):
    with open(fname, "w") as f:
        for dim in barcode.keys():
            for interval in barcode[dim]:
                if interval.is_finite():
                    f.write("%d %g %g\n" %(dim, interval.birth, interval.death))
                else:
                    f.write("%d %g inf\n" %(dim, interval.birth))
    

class DiphaRunner:
    def __init__(self, top_dim, cpu_count = None, quiet = True, mpirun = None, dipha = None):
        self.top_dim = int(top_dim)
        if top_dim <= 0:
            raise ValueError("Top dimension must be postitive.")
        
        if cpu_count is None:
            try:
                self.cpu_count = multiprocessing.cpu_count()
            except NotImplementedError as e:
                self.cpu_count = 1
        else:
            self.cpu_count = cpu_count

        self.quiet = quiet

        if mpirun is None:
            self.mpirun = os.environ.get("MPIRUN")
            paths = os.environ.get("PATH", "")
            if self.mpirun is None:
                for path in paths.split(":"):
                    x = os.path.join(path, "mpirun")
                    if os.path.isfile(x):
                        self.mpirun = x
                        break
        else:
            self.mpirun = mpirun

        if dipha is None:
            self.dipha = os.environ.get("DIPHA")
            paths = os.environ.get("PATH", "")
            if self.dipha is None:
                for path in paths.split(":"):
                    x = os.path.join(path, "dipha")
                    if os.path.isfile(x):
                        self.dipha = x
                        break
        else:
            self.dipha = dipha

        if self.mpirun is None:
            raise RuntimeError("Could not find mpirun exectuable.")
        if self.dipha is None:
            raise RuntimeError("Could not find dipha executable.")

        self.tmpdir = tempfile.mkdtemp()
        self.ifile = os.path.join(self.tmpdir, "input.dipha")
        self.ofile = os.path.join(self.tmpdir, "output.dipha")
        self.ready = False

        
    def weight_matrix(self, weights):
        save_weight_matrix(self.ifile, weights)
        self.ready = True

    def masked_weight_matrix(self, weights):
        save_masked_weight_matrix(self.ifile, weights)
        self.ready = True

    def edge_list(self, edge_list):
        save_edge_list(self.ifile, edge_list)
        self.ready = True

    def run(self):
        if not self.ready:
            self.cleanup()
            raise RuntimeError("Not ready to run. Maybe you haven't given me data, or I've already been run?")
        
        if self.quiet:
            opipe = subprocess.PIPE
        else:
            opipe = None

        if not self.quiet:
            print("Spawning DIPHA.")
            
        proc = subprocess.Popen([self.mpirun, "-np", "%d" %(self.cpu_count), self.dipha, "--upper_dim", "%d" %(self.top_dim), self.ifile, self.ofile], stdout=opipe)

        self.out_message = proc.communicate()[0]
        self.code = proc.returncode
        
        if not self.quiet and self.code != 0:
            print("DIPHA exited abnormally with code %d." %(self.code))
            self.cleanup()

        if self.code == 0:
            self.barcode = load_barcode(self.ofile)

        self.ready = False
        self.cleanup()
        

    def cleanup(self):
        os.remove(self.ifile)
        os.remove(self.ofile)
        os.rmdir(self.tmpdir)
        self.ifile = None
        self.ofile = None
        self.tmpdir = None