summaryrefslogtreecommitdiff
path: root/phstuff/simplicial.py
blob: 8ef96f2c80c7e97fc0cb152c1b19abbc36431dc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
import itertools

class Node:
    def __init__(self, x, i, w, parent):
        self.x = x
        self.i = i
        self.w = w
        self.parent = parent
        self.children = dict()

    def is_root(self):
        return self.parent is None

    def simplex(self):
        s = []
        node = self
        if node.is_root():
            return None

        while True:
            s.append(node.x)
            node = node.parent
            if node.is_root():
                break
            
        s.reverse()
        return s

    def boundary_nodes(self):
        if self.is_root():
            return None
        if self.parent.is_root():
            return []

        ret = []
        up = []
        skip = self

        while not skip.is_root():
            down = list(up)
            node = skip.parent
            while len(down) != 0:
                node = node.children[down.pop()]
            ret.append(node)
            up.append(skip.x)
            skip = skip.parent

        assert(len(ret) == self.dimension() + 1)
        return ret

    def boundary_simplices(self):
        ret = []
        for node in self.boundary_nodes():
            ret.append(node.simplex())
        return ret

    def dimension(self):
        ret = 0
        if self.is_root():
            return None

        node = self
        while not node.parent.is_root():
            ret += 1
            node = node.parent
        return ret

class ComplexIterator:
    def __init__(self, start):
        self.__to_go = start.children.values()

    def next(self):
        if len(self.__to_go) == 0:
            raise StopIteration
        else:
            ret = self.__to_go.pop(0)
            self.__to_go.extend(ret.children.values())
            return ret

class Complex:
    def __init__(self):
        self.__root = Node(None, None, None, None)
        self.__count = 0
        self.__top_dim = -1
        self.__ordered = False

    def size(self):
        return self.__count

    def top_dim(self):
        return self.__top_dim

    def is_ordered(self):
        return self.__ordered

    def order(self):
        i = 0
        for node in self:
            node.i = i
            i += 1
        self.__ordered = True

    def find(self, simplex): # The simplex must be sorted!
        p = len(simplex) - 1

        if p < -1:
            return None

        node = self.__root

        for v in simplex:
            if v in node.children:
                node = node.children[v]
            else:
                return None
        return node

    def add(self, simplex, weight):
        self.__ordered = False
        simplex = sorted(simplex)

        p = len(simplex) - 1
        if p < 0:
            return None

        last = simplex[-1]
        pre = simplex[0:p]

        parent = self.find(pre)

        node = Node(last, None, weight, parent)
        
        ret = parent.children.setdefault(last, node)
        if ret == node:
            self.__count += 1
            self.__top_dim = max(self.__top_dim, p)

        return ret

    def __contains__(self, simplex):
        return self.find(simplex) is not None

    def __iter__(self):
        return ComplexIterator(self.__root)

    def __len__(self):
        return self.__count

    def num_vertices(self):
        return len(self.__root.children)

# Very naive temporary VR implementations.
def naive_vr_tmp(graph, top_dim):
    assert(graph.shape[0] == graph.shape[1])

    vertex_set = np.arange(0, graph.shape[0])
    cplx = Complex()
    for p in range(0, top_dim):
        to_add = itertools.combinations(vertex_set, p+1)
        if p == 0:
            for v in vertex_set:
                cplx.add([v], 0.0)
        elif p == 1:
            for simplex in to_add:
                if not graph.mask[simplex[0], simplex[1]]:
                    cplx.add(simplex, graph[simplex[0], simplex[1]])
        else:
            for simplex in to_add:
                codim1faces = itertools.combinations(simplex, p)
                weight = 0.0
                all_faces_in = True
                for face in codim1faces:
                    if face in cplx:
                        weight = max(cplx.find(face).w, weight)
                    else:
                        all_faces_in = False
                        break
                if all_faces_in:
                    cplx.add(simplex, weight)
            
        
    return cplx