summaryrefslogtreecommitdiff
path: root/include/gudhi/Alpha_complex.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/gudhi/Alpha_complex.h')
-rw-r--r--include/gudhi/Alpha_complex.h233
1 files changed, 124 insertions, 109 deletions
diff --git a/include/gudhi/Alpha_complex.h b/include/gudhi/Alpha_complex.h
index 2c95ceb4..1ff95c3d 100644
--- a/include/gudhi/Alpha_complex.h
+++ b/include/gudhi/Alpha_complex.h
@@ -4,7 +4,7 @@
*
* Author(s): Vincent Rouvreau
*
- * Copyright (C) 2015 INRIA Saclay (France)
+ * Copyright (C) 2015 INRIA
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@@ -23,9 +23,6 @@
#ifndef ALPHA_COMPLEX_H_
#define ALPHA_COMPLEX_H_
-// to construct a simplex_tree from Delaunay_triangulation
-#include <gudhi/graph_simplicial_complex.h>
-#include <gudhi/Simplex_tree.h>
#include <gudhi/Debug_utils.h>
// to construct Alpha_complex from a OFF file of points
#include <gudhi/Points_off_io.h>
@@ -36,6 +33,7 @@
#include <CGAL/Delaunay_triangulation.h>
#include <CGAL/Epick_d.h>
#include <CGAL/Spatial_sort_traits_adapter_d.h>
+#include <CGAL/property_map.h> // for CGAL::Identity_property_map
#include <iostream>
#include <vector>
@@ -57,9 +55,9 @@ namespace alpha_complex {
* \ingroup alpha_complex
*
* \details
- * The data structure can be constructed from a CGAL Delaunay triangulation (for more informations on CGAL Delaunay
- * triangulation, please refer to the corresponding chapter in page http://doc.cgal.org/latest/Triangulation/) or from
- * an OFF file (cf. Points_off_reader).
+ * The data structure is constructing a CGAL Delaunay triangulation (for more informations on CGAL Delaunay
+ * triangulation, please refer to the corresponding chapter in page http://doc.cgal.org/latest/Triangulation/) from a
+ * range of points or from an OFF file (cf. Points_off_reader).
*
* Please refer to \ref alpha_complex for examples.
*
@@ -74,7 +72,7 @@ namespace alpha_complex {
*
*/
template<class Kernel = CGAL::Epick_d<CGAL::Dynamic_dimension_tag>>
-class Alpha_complex : public Simplex_tree<> {
+class Alpha_complex {
public:
// Add an int in TDS to save point index in the structure
typedef CGAL::Triangulation_data_structure<typename Kernel::Dimension,
@@ -90,13 +88,6 @@ class Alpha_complex : public Simplex_tree<> {
typedef Kernel Geom_traits;
private:
- // From Simplex_tree
- // Type required to insert into a simplex_tree (with or without subfaces).
- typedef std::vector<Vertex_handle> Vector_vertex;
-
- // Simplex_result is the type returned from simplex_tree insert function.
- typedef typename std::pair<Simplex_handle, bool> Simplex_result;
-
typedef typename Kernel::Compute_squared_radius_d Squared_Radius;
typedef typename Kernel::Side_of_bounded_sphere_d Is_Gabriel;
typedef typename Kernel::Point_dimension_d Point_Dimension;
@@ -111,7 +102,7 @@ class Alpha_complex : public Simplex_tree<> {
typedef typename Delaunay_triangulation::size_type size_type;
// Map type to switch from simplex tree vertex handle to CGAL vertex iterator.
- typedef typename std::map< Vertex_handle, CGAL_vertex_iterator > Vector_vertex_iterator;
+ typedef typename std::map< std::size_t, CGAL_vertex_iterator > Vector_vertex_iterator;
private:
/** \brief Vertex iterator vector to switch from simplex tree vertex handle to CGAL vertex iterator.
@@ -124,16 +115,15 @@ class Alpha_complex : public Simplex_tree<> {
public:
/** \brief Alpha_complex constructor from an OFF file name.
- * Uses the Delaunay_triangulation_off_reader to construct the Delaunay triangulation required to initialize
+ *
+ * Uses the Points_off_reader to construct the Delaunay triangulation required to initialize
* the Alpha_complex.
*
* Duplicate points are inserted once in the Alpha_complex. This is the reason why the vertices may be not contiguous.
*
* @param[in] off_file_name OFF file [path and] name.
- * @param[in] max_alpha_square maximum for alpha square value. Default value is +\f$\infty\f$.
*/
- Alpha_complex(const std::string& off_file_name,
- Filtration_value max_alpha_square = std::numeric_limits<Filtration_value>::infinity())
+ Alpha_complex(const std::string& off_file_name)
: triangulation_(nullptr) {
Gudhi::Points_off_reader<Point_d> off_reader(off_file_name);
if (!off_reader.is_valid()) {
@@ -141,7 +131,7 @@ class Alpha_complex : public Simplex_tree<> {
exit(-1); // ----- >>
}
- init_from_range(off_reader.get_point_cloud(), max_alpha_square);
+ init_from_range(off_reader.get_point_cloud());
}
/** \brief Alpha_complex constructor from a list of points.
@@ -149,23 +139,17 @@ class Alpha_complex : public Simplex_tree<> {
* Duplicate points are inserted once in the Alpha_complex. This is the reason why the vertices may be not contiguous.
*
* @param[in] points Range of points to triangulate. Points must be in Kernel::Point_d
- * @param[in] max_alpha_square maximum for alpha square value. Default value is +\f$\infty\f$.
*
* The type InputPointRange must be a range for which std::begin and
* std::end return input iterators on a Kernel::Point_d.
- *
- * @post Compare num_simplices with InputPointRange points number (not the same in case of duplicate points).
*/
template<typename InputPointRange >
- Alpha_complex(const InputPointRange& points,
- Filtration_value max_alpha_square = std::numeric_limits<Filtration_value>::infinity())
+ Alpha_complex(const InputPointRange& points)
: triangulation_(nullptr) {
- init_from_range(points, max_alpha_square);
+ init_from_range(points);
}
- /** \brief Alpha_complex destructor.
- *
- * @warning Deletes the Delaunay triangulation.
+ /** \brief Alpha_complex destructor deletes the Delaunay triangulation.
*/
~Alpha_complex() {
delete triangulation_;
@@ -183,15 +167,24 @@ class Alpha_complex : public Simplex_tree<> {
* @return The point found.
* @exception std::out_of_range In case vertex is not found (cf. std::vector::at).
*/
- Point_d get_point(Vertex_handle vertex) const {
+ const Point_d& get_point(std::size_t vertex) const {
return vertex_handle_to_iterator_.at(vertex)->point();
}
+ /** \brief number_of_vertices returns the number of vertices (same as the number of points).
+ *
+ * @return The number of vertices.
+ */
+ const std::size_t number_of_vertices() const {
+ return vertex_handle_to_iterator_.size();
+ }
+
private:
template<typename InputPointRange >
- void init_from_range(const InputPointRange& points, Filtration_value max_alpha_square) {
+ void init_from_range(const InputPointRange& points) {
auto first = std::begin(points);
auto last = std::end(points);
+
if (first != last) {
// point_dimension function initialization
Point_Dimension point_dimension = kernel_.point_dimension_d_object();
@@ -199,90 +192,107 @@ class Alpha_complex : public Simplex_tree<> {
// Delaunay triangulation is point dimension.
triangulation_ = new Delaunay_triangulation(point_dimension(*first));
- std::vector<Point_d> points(first, last);
+ std::vector<Point_d> point_cloud(first, last);
// Creates a vector {0, 1, ..., N-1}
std::vector<std::ptrdiff_t> indices(boost::counting_iterator<std::ptrdiff_t>(0),
- boost::counting_iterator<std::ptrdiff_t>(points.size()));
+ boost::counting_iterator<std::ptrdiff_t>(point_cloud.size()));
+
+ typedef boost::iterator_property_map<typename std::vector<Point_d>::iterator,
+ CGAL::Identity_property_map<std::ptrdiff_t>> Point_property_map;
+ typedef CGAL::Spatial_sort_traits_adapter_d<Kernel, Point_property_map> Search_traits_d;
- // Sort indices considering CGAL spatial sort
- typedef CGAL::Spatial_sort_traits_adapter_d<Kernel, Point_d*> Search_traits_d;
- spatial_sort(indices.begin(), indices.end(), Search_traits_d(&(points[0])));
+ CGAL::spatial_sort(indices.begin(), indices.end(), Search_traits_d(std::begin(point_cloud)));
typename Delaunay_triangulation::Full_cell_handle hint;
for (auto index : indices) {
- typename Delaunay_triangulation::Vertex_handle pos = triangulation_->insert(points[index], hint);
+ typename Delaunay_triangulation::Vertex_handle pos = triangulation_->insert(point_cloud[index], hint);
// Save index value as data to retrieve it after insertion
pos->data() = index;
hint = pos->full_cell();
}
- init(max_alpha_square);
+ // --------------------------------------------------------------------------------------------
+ // double map to retrieve simplex tree vertex handles from CGAL vertex iterator and vice versa
+ // Loop on triangulation vertices list
+ for (CGAL_vertex_iterator vit = triangulation_->vertices_begin(); vit != triangulation_->vertices_end(); ++vit) {
+ if (!triangulation_->is_infinite(*vit)) {
+#ifdef DEBUG_TRACES
+ std::cout << "Vertex insertion - " << vit->data() << " -> " << vit->point() << std::endl;
+#endif // DEBUG_TRACES
+ vertex_handle_to_iterator_.emplace(vit->data(), vit);
+ }
+ }
+ // --------------------------------------------------------------------------------------------
}
}
- /** \brief Initialize the Alpha_complex from the Delaunay triangulation.
+ public:
+ template <typename SimplicialComplexForAlpha>
+ bool create_complex(SimplicialComplexForAlpha& complex) {
+ typedef typename SimplicialComplexForAlpha::Filtration_value Filtration_value;
+ return create_complex(complex, std::numeric_limits<Filtration_value>::infinity());
+ }
+
+ /** \brief Inserts all Delaunay triangulation into the simplicial complex.
+ * It also computes the filtration values accordingly to the \ref createcomplexalgorithm
*
- * @param[in] max_alpha_square maximum for alpha square value.
+ * \tparam SimplicialComplexForAlpha must meet `SimplicialComplexForAlpha` concept.
*
- * @warning Delaunay triangulation must be already constructed with at least one vertex and dimension must be more
- * than 0.
+ * @param[in] complex SimplicialComplexForAlpha to be created.
+ * @param[in] max_alpha_square maximum for alpha square value. Default value is +\f$\infty\f$.
+ *
+ * @return true if creation succeeds, false otherwise.
+ *
+ * @pre Delaunay triangulation must be already constructed with dimension strictly greater than 0.
+ * @pre The simplicial complex must be empty (no vertices)
*
* Initialization can be launched once.
*/
- void init(Filtration_value max_alpha_square) {
+ template <typename SimplicialComplexForAlpha, typename Filtration_value>
+ bool create_complex(SimplicialComplexForAlpha& complex, Filtration_value max_alpha_square) {
+ // From SimplicialComplexForAlpha type required to insert into a simplicial complex (with or without subfaces).
+ typedef typename SimplicialComplexForAlpha::Vertex_handle Vertex_handle;
+ typedef typename SimplicialComplexForAlpha::Simplex_handle Simplex_handle;
+ typedef std::vector<Vertex_handle> Vector_vertex;
+
if (triangulation_ == nullptr) {
- std::cerr << "Alpha_complex init - Cannot init from a NULL triangulation\n";
- return; // ----- >>
- }
- if (triangulation_->number_of_vertices() < 1) {
- std::cerr << "Alpha_complex init - Cannot init from a triangulation without vertices\n";
- return; // ----- >>
+ std::cerr << "Alpha_complex cannot create_complex from a NULL triangulation\n";
+ return false; // ----- >>
}
if (triangulation_->maximal_dimension() < 1) {
- std::cerr << "Alpha_complex init - Cannot init from a zero-dimension triangulation\n";
- return; // ----- >>
+ std::cerr << "Alpha_complex cannot create_complex from a zero-dimension triangulation\n";
+ return false; // ----- >>
}
- if (num_vertices() > 0) {
- std::cerr << "Alpha_complex init - Cannot init twice\n";
- return; // ----- >>
+ if (complex.num_vertices() > 0) {
+ std::cerr << "Alpha_complex create_complex - complex is not empty\n";
+ return false; // ----- >>
}
- set_dimension(triangulation_->maximal_dimension());
-
- // --------------------------------------------------------------------------------------------
- // double map to retrieve simplex tree vertex handles from CGAL vertex iterator and vice versa
- // Loop on triangulation vertices list
- for (CGAL_vertex_iterator vit = triangulation_->vertices_begin(); vit != triangulation_->vertices_end(); ++vit) {
- if (!triangulation_->is_infinite(*vit)) {
-#ifdef DEBUG_TRACES
- std::cout << "Vertex insertion - " << vit->data() << " -> " << vit->point() << std::endl;
-#endif // DEBUG_TRACES
- vertex_handle_to_iterator_.emplace(vit->data(), vit);
- }
- }
- // --------------------------------------------------------------------------------------------
+ complex.set_dimension(triangulation_->maximal_dimension());
// --------------------------------------------------------------------------------------------
// Simplex_tree construction from loop on triangulation finite full cells list
- for (auto cit = triangulation_->finite_full_cells_begin(); cit != triangulation_->finite_full_cells_end(); ++cit) {
- Vector_vertex vertexVector;
+ if (triangulation_->number_of_vertices() > 0) {
+ for (auto cit = triangulation_->finite_full_cells_begin(); cit != triangulation_->finite_full_cells_end(); ++cit) {
+ Vector_vertex vertexVector;
#ifdef DEBUG_TRACES
- std::cout << "Simplex_tree insertion ";
+ std::cout << "Simplex_tree insertion ";
#endif // DEBUG_TRACES
- for (auto vit = cit->vertices_begin(); vit != cit->vertices_end(); ++vit) {
- if (*vit != nullptr) {
+ for (auto vit = cit->vertices_begin(); vit != cit->vertices_end(); ++vit) {
+ if (*vit != nullptr) {
#ifdef DEBUG_TRACES
- std::cout << " " << (*vit)->data();
+ std::cout << " " << (*vit)->data();
#endif // DEBUG_TRACES
- // Vector of vertex construction for simplex_tree structure
- vertexVector.push_back((*vit)->data());
+ // Vector of vertex construction for simplex_tree structure
+ vertexVector.push_back((*vit)->data());
+ }
}
- }
#ifdef DEBUG_TRACES
- std::cout << std::endl;
+ std::cout << std::endl;
#endif // DEBUG_TRACES
- // Insert each simplex and its subfaces in the simplex tree - filtration is NaN
- insert_simplex_and_subfaces(vertexVector, std::numeric_limits<double>::quiet_NaN());
+ // Insert each simplex and its subfaces in the simplex tree - filtration is NaN
+ complex.insert_simplex_and_subfaces(vertexVector, std::numeric_limits<double>::quiet_NaN());
+ }
}
// --------------------------------------------------------------------------------------------
@@ -290,16 +300,16 @@ class Alpha_complex : public Simplex_tree<> {
// Will be re-used many times
Vector_of_CGAL_points pointVector;
// ### For i : d -> 0
- for (int decr_dim = dimension(); decr_dim >= 0; decr_dim--) {
+ for (int decr_dim = triangulation_->maximal_dimension(); decr_dim >= 0; decr_dim--) {
// ### Foreach Sigma of dim i
- for (auto f_simplex : skeleton_simplex_range(decr_dim)) {
- int f_simplex_dim = dimension(f_simplex);
+ for (Simplex_handle f_simplex : complex.skeleton_simplex_range(decr_dim)) {
+ int f_simplex_dim = complex.dimension(f_simplex);
if (decr_dim == f_simplex_dim) {
pointVector.clear();
#ifdef DEBUG_TRACES
std::cout << "Sigma of dim " << decr_dim << " is";
#endif // DEBUG_TRACES
- for (auto vertex : simplex_vertex_range(f_simplex)) {
+ for (auto vertex : complex.simplex_vertex_range(f_simplex)) {
pointVector.push_back(get_point(vertex));
#ifdef DEBUG_TRACES
std::cout << " " << vertex;
@@ -309,7 +319,7 @@ class Alpha_complex : public Simplex_tree<> {
std::cout << std::endl;
#endif // DEBUG_TRACES
// ### If filt(Sigma) is NaN : filt(Sigma) = alpha(Sigma)
- if (std::isnan(filtration(f_simplex))) {
+ if (std::isnan(complex.filtration(f_simplex))) {
Filtration_value alpha_complex_filtration = 0.0;
// No need to compute squared_radius on a single point - alpha is 0.0
if (f_simplex_dim > 0) {
@@ -318,12 +328,12 @@ class Alpha_complex : public Simplex_tree<> {
alpha_complex_filtration = squared_radius(pointVector.begin(), pointVector.end());
}
- assign_filtration(f_simplex, alpha_complex_filtration);
+ complex.assign_filtration(f_simplex, alpha_complex_filtration);
#ifdef DEBUG_TRACES
- std::cout << "filt(Sigma) is NaN : filt(Sigma) =" << filtration(f_simplex) << std::endl;
+ std::cout << "filt(Sigma) is NaN : filt(Sigma) =" << complex.filtration(f_simplex) << std::endl;
#endif // DEBUG_TRACES
}
- propagate_alpha_filtration(f_simplex, decr_dim);
+ propagate_alpha_filtration(complex, f_simplex, decr_dim);
}
}
}
@@ -331,36 +341,41 @@ class Alpha_complex : public Simplex_tree<> {
// --------------------------------------------------------------------------------------------
// As Alpha value is an approximation, we have to make filtration non decreasing while increasing the dimension
- bool modified_filt = make_filtration_non_decreasing();
+ complex.make_filtration_non_decreasing();
// Remove all simplices that have a filtration value greater than max_alpha_square
- // Remark: prune_above_filtration does not require initialize_filtration to be done before.
- modified_filt |= prune_above_filtration(max_alpha_square);
- if (modified_filt) {
- initialize_filtration();
- }
+ complex.prune_above_filtration(max_alpha_square);
// --------------------------------------------------------------------------------------------
+ return true;
}
- template<typename Simplex_handle>
- void propagate_alpha_filtration(Simplex_handle f_simplex, int decr_dim) {
+ private:
+ template <typename SimplicialComplexForAlpha, typename Simplex_handle>
+ void propagate_alpha_filtration(SimplicialComplexForAlpha& complex, Simplex_handle f_simplex, int decr_dim) {
+ // From SimplicialComplexForAlpha type required to assign filtration values.
+ typedef typename SimplicialComplexForAlpha::Filtration_value Filtration_value;
+#ifdef DEBUG_TRACES
+ typedef typename SimplicialComplexForAlpha::Vertex_handle Vertex_handle;
+#endif // DEBUG_TRACES
+
// ### Foreach Tau face of Sigma
- for (auto f_boundary : boundary_simplex_range(f_simplex)) {
+ for (auto f_boundary : complex.boundary_simplex_range(f_simplex)) {
#ifdef DEBUG_TRACES
std::cout << " | --------------------------------------------------\n";
std::cout << " | Tau ";
- for (auto vertex : simplex_vertex_range(f_boundary)) {
+ for (auto vertex : complex.simplex_vertex_range(f_boundary)) {
std::cout << vertex << " ";
}
std::cout << "is a face of Sigma\n";
- std::cout << " | isnan(filtration(Tau)=" << std::isnan(filtration(f_boundary)) << std::endl;
+ std::cout << " | isnan(complex.filtration(Tau)=" << std::isnan(complex.filtration(f_boundary)) << std::endl;
#endif // DEBUG_TRACES
// ### If filt(Tau) is not NaN
- if (!std::isnan(filtration(f_boundary))) {
+ if (!std::isnan(complex.filtration(f_boundary))) {
// ### filt(Tau) = fmin(filt(Tau), filt(Sigma))
- Filtration_value alpha_complex_filtration = fmin(filtration(f_boundary), filtration(f_simplex));
- assign_filtration(f_boundary, alpha_complex_filtration);
+ Filtration_value alpha_complex_filtration = fmin(complex.filtration(f_boundary),
+ complex.filtration(f_simplex));
+ complex.assign_filtration(f_boundary, alpha_complex_filtration);
#ifdef DEBUG_TRACES
- std::cout << " | filt(Tau) = fmin(filt(Tau), filt(Sigma)) = " << filtration(f_boundary) << std::endl;
+ std::cout << " | filt(Tau) = fmin(filt(Tau), filt(Sigma)) = " << complex.filtration(f_boundary) << std::endl;
#endif // DEBUG_TRACES
// ### Else
} else {
@@ -372,12 +387,12 @@ class Alpha_complex : public Simplex_tree<> {
#ifdef DEBUG_TRACES
Vertex_handle vertexForGabriel = Vertex_handle();
#endif // DEBUG_TRACES
- for (auto vertex : simplex_vertex_range(f_boundary)) {
+ for (auto vertex : complex.simplex_vertex_range(f_boundary)) {
pointVector.push_back(get_point(vertex));
}
// Retrieve the Sigma point that is not part of Tau - parameter for is_gabriel function
Point_d point_for_gabriel;
- for (auto vertex : simplex_vertex_range(f_simplex)) {
+ for (auto vertex : complex.simplex_vertex_range(f_simplex)) {
point_for_gabriel = get_point(vertex);
if (std::find(pointVector.begin(), pointVector.end(), point_for_gabriel) == pointVector.end()) {
#ifdef DEBUG_TRACES
@@ -398,10 +413,10 @@ class Alpha_complex : public Simplex_tree<> {
// ### If Tau is not Gabriel of Sigma
if (false == is_gab) {
// ### filt(Tau) = filt(Sigma)
- Filtration_value alpha_complex_filtration = filtration(f_simplex);
- assign_filtration(f_boundary, alpha_complex_filtration);
+ Filtration_value alpha_complex_filtration = complex.filtration(f_simplex);
+ complex.assign_filtration(f_boundary, alpha_complex_filtration);
#ifdef DEBUG_TRACES
- std::cout << " | filt(Tau) = filt(Sigma) = " << filtration(f_boundary) << std::endl;
+ std::cout << " | filt(Tau) = filt(Sigma) = " << complex.filtration(f_boundary) << std::endl;
#endif // DEBUG_TRACES
}
}