summaryrefslogtreecommitdiff
path: root/src/python/gudhi/cubical_complex.pyx
blob: 8e244bb8b4852b93e140c01af8873aea1b4e34fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# This file is part of the Gudhi Library - https://gudhi.inria.fr/ -
# which is released under MIT.
# See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full
# license details.
# Author(s):       Vincent Rouvreau
#
# Copyright (C) 2016 Inria
#
# Modification(s):
#   - YYYY/MM Author: Description of the modification

from __future__ import print_function
from cython cimport numeric
from libcpp.vector cimport vector
from libcpp.utility cimport pair
from libcpp.string cimport string
from libcpp cimport bool
import errno
import os
import sys

import numpy as np

__author__ = "Vincent Rouvreau"
__copyright__ = "Copyright (C) 2016 Inria"
__license__ = "MIT"

cdef extern from "Cubical_complex_interface.h" namespace "Gudhi":
    cdef cppclass Bitmap_cubical_complex_base_interface "Gudhi::Cubical_complex::Cubical_complex_interface<>":
        Bitmap_cubical_complex_base_interface(vector[unsigned] dimensions, vector[double] top_dimensional_cells) nogil
        Bitmap_cubical_complex_base_interface(string perseus_file) nogil
        int num_simplices() nogil
        int dimension() nogil

cdef extern from "Persistent_cohomology_interface.h" namespace "Gudhi":
    cdef cppclass Cubical_complex_persistence_interface "Gudhi::Persistent_cohomology_interface<Gudhi::Cubical_complex::Cubical_complex_interface<>>":
        Cubical_complex_persistence_interface(Bitmap_cubical_complex_base_interface * st, bool persistence_dim_max) nogil
        void compute_persistence(int homology_coeff_field, double min_persistence) nogil except+
        vector[pair[int, pair[double, double]]] get_persistence() nogil
        vector[vector[int]] cofaces_of_cubical_persistence_pairs() nogil
        vector[int] betti_numbers() nogil
        vector[int] persistent_betti_numbers(double from_value, double to_value) nogil
        vector[pair[double,double]] intervals_in_dimension(int dimension) nogil

# CubicalComplex python interface
cdef class CubicalComplex:
    """The CubicalComplex is an example of a structured complex useful in
    computational mathematics (specially rigorous numerics) and image
    analysis.
    """
    cdef Bitmap_cubical_complex_base_interface * thisptr

    cdef Cubical_complex_persistence_interface * pcohptr

    # Fake constructor that does nothing but documenting the constructor
    def __init__(self, dimensions=None, top_dimensional_cells=None,
                 perseus_file=''):
        """CubicalComplex constructor from dimensions and
        top_dimensional_cells or from a Perseus-style file name.

        :param dimensions: A list of number of top dimensional cells.
        :type dimensions: list of int
        :param top_dimensional_cells: A list of cells filtration values.
        :type top_dimensional_cells: list of double

        Or

        :param top_dimensional_cells: A multidimensional array of cells
            filtration values.
        :type top_dimensional_cells: anything convertible to a numpy ndarray

        Or

        :param perseus_file: A Perseus-style file name.
        :type perseus_file: string
        """

    # The real cython constructor
    def __cinit__(self, dimensions=None, top_dimensional_cells=None,
                  perseus_file=''):
        if ((dimensions is not None) and (top_dimensional_cells is not None)
            and (perseus_file == '')):
            self._construct_from_cells(dimensions, top_dimensional_cells)
        elif ((dimensions is None) and (top_dimensional_cells is not None)
            and (perseus_file == '')):
            top_dimensional_cells = np.array(top_dimensional_cells,
                                             copy = False,
                                             order = 'F')
            dimensions = top_dimensional_cells.shape
            top_dimensional_cells = top_dimensional_cells.ravel(order='F')
            self._construct_from_cells(dimensions, top_dimensional_cells)
        elif ((dimensions is None) and (top_dimensional_cells is None)
            and (perseus_file != '')):
            if os.path.isfile(perseus_file):
                self._construct_from_file(perseus_file.encode('utf-8'))
            else:
                raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT),
                                        perseus_file)
        else:
            print("CubicalComplex can be constructed from dimensions and "
                "top_dimensional_cells or from a Perseus-style file name.",
                file=sys.stderr)

    def _construct_from_cells(self, vector[unsigned] dimensions, vector[double] top_dimensional_cells):
        with nogil:
            self.thisptr = new Bitmap_cubical_complex_base_interface(dimensions, top_dimensional_cells)

    def _construct_from_file(self, string filename):
        with nogil:
            self.thisptr = new Bitmap_cubical_complex_base_interface(filename)

    def __dealloc__(self):
        if self.thisptr != NULL:
            del self.thisptr
        if self.pcohptr != NULL:
            del self.pcohptr

    def __is_defined(self):
        """Returns true if CubicalComplex pointer is not NULL.
         """
        return self.thisptr != NULL

    def __is_persistence_defined(self):
        """Returns true if Persistence pointer is not NULL.
         """
        return self.pcohptr != NULL

    def num_simplices(self):
        """This function returns the number of all cubes in the complex.

        :returns:  int -- the number of all cubes in the complex.
        """
        return self.thisptr.num_simplices()

    def dimension(self):
        """This function returns the dimension of the complex.

        :returns:  int -- the complex dimension.
        """
        return self.thisptr.dimension()

    def compute_persistence(self, homology_coeff_field=11, min_persistence=0):
        """This function computes the persistence of the complex, so it can be
        accessed through :func:`persistent_betti_numbers`,
        :func:`persistence_intervals_in_dimension`, etc. This function is
        equivalent to :func:`persistence` when you do not want the list
        :func:`persistence` returns.

        :param homology_coeff_field: The homology coefficient field. Must be a
            prime number. Default value is 11. Max is 46337.
        :type homology_coeff_field: int.
        :param min_persistence: The minimum persistence value to take into
            account (strictly greater than min_persistence). Default value is
            0.0.
            Sets min_persistence to -1.0 to see all values.
        :type min_persistence: float.
        :returns: Nothing.
        """
        if self.pcohptr != NULL:
            del self.pcohptr
        assert self.__is_defined()
        cdef int field = homology_coeff_field
        cdef double minp = min_persistence
        with nogil:
            self.pcohptr = new Cubical_complex_persistence_interface(self.thisptr, 1)
            self.pcohptr.compute_persistence(field, minp)

    def persistence(self, homology_coeff_field=11, min_persistence=0):
        """This function computes and returns the persistence of the complex.

        :param homology_coeff_field: The homology coefficient field. Must be a
            prime number. Default value is 11. Max is 46337.
        :type homology_coeff_field: int.
        :param min_persistence: The minimum persistence value to take into
            account (strictly greater than min_persistence). Default value is
            0.0.
            Sets min_persistence to -1.0 to see all values.
        :type min_persistence: float.
        :returns: list of pairs(dimension, pair(birth, death)) -- the
            persistence of the complex.
        """
        self.compute_persistence(homology_coeff_field, min_persistence)
        return self.pcohptr.get_persistence()

    def cofaces_of_persistence_pairs(self):
        """A persistence interval is described by a pair of cells, one that creates the
        feature and one that kills it. The filtration values of those 2 cells give coordinates
        for a point in a persistence diagram, or a bar in a barcode. Structurally, in the
        cubical complexes provided here, the filtration value of any cell is the minimum of the
        filtration values of the maximal cells that contain it. Connecting persistence diagram
        coordinates to the corresponding value in the input (i.e. the filtration values of
        the top-dimensional cells) is useful for differentiation purposes.

        This function returns a list of pairs of top-dimensional cells corresponding to
        the persistence birth and death cells of the filtration. The cells are represented by
        their indices in the input list of top-dimensional cells (and not their indices in the
        internal datastructure that includes non-maximal cells). Note that when two adjacent
        top-dimensional cells have the same filtration value, we arbitrarily return one of the two
        when calling the function on one of their common faces.

        :returns: The top-dimensional cells/cofaces of the positive and negative cells,
            together with the corresponding homological dimension, in two lists of numpy arrays of integers.
            The first list contains the regular persistence pairs, grouped by dimension.
            It contains numpy arrays of shape [number_of_persistence_points, 2].
            The indices of the arrays in the list correspond to the homological dimensions, and the
            integers of each row in each array correspond to: (index of positive top-dimensional cell,
            index of negative top-dimensional cell).
            The second list contains the essential features, grouped by dimension.
            It contains numpy arrays of shape [number_of_persistence_points, 1].
            The indices of the arrays in the list correspond to the homological dimensions, and the
            integers of each row in each array correspond to: (index of positive top-dimensional cell).
        """

        assert self.pcohptr != NULL, "compute_persistence() must be called before cofaces_of_persistence_pairs()"

        cdef vector[vector[int]] persistence_result
        output = [[],[]]
        with nogil:
            persistence_result = self.pcohptr.cofaces_of_cubical_persistence_pairs()
        pr = np.array(persistence_result)

        ess_ind = np.argwhere(pr[:,2] == -1)[:,0]
        ess = pr[ess_ind]
        max_h = max(ess[:,0])+1 if len(ess) > 0 else 0
        for h in range(max_h):
            hidxs = np.argwhere(ess[:,0] == h)[:,0]
            output[1].append(ess[hidxs][:,1])

        reg_ind = np.setdiff1d(np.array(range(len(pr))), ess_ind)
        reg = pr[reg_ind]
        max_h = max(reg[:,0])+1 if len(reg) > 0 else 0
        for h in range(max_h):
            hidxs = np.argwhere(reg[:,0] == h)[:,0]
            output[0].append(reg[hidxs][:,1:])

        return output

    def betti_numbers(self):
        """This function returns the Betti numbers of the complex.

        :returns: list of int -- The Betti numbers ([B0, B1, ..., Bn]).

        :note: betti_numbers function requires :func:`compute_persistence` function to be
            launched first.

        :note: betti_numbers function always returns [1, 0, 0, ...] as infinity
            filtration cubes are not removed from the complex.
        """
        assert self.pcohptr != NULL, "compute_persistence() must be called before betti_numbers()"
        return self.pcohptr.betti_numbers()

    def persistent_betti_numbers(self, from_value, to_value):
        """This function returns the persistent Betti numbers of the complex.

        :param from_value: The persistence birth limit to be added in the
            numbers (persistent birth <= from_value).
        :type from_value: float.
        :param to_value: The persistence death limit to be added in the
            numbers (persistent death > to_value).
        :type to_value: float.

        :returns: list of int -- The persistent Betti numbers ([B0, B1, ...,
            Bn]).

        :note: persistent_betti_numbers function requires :func:`compute_persistence`
            function to be launched first.
        """
        assert self.pcohptr != NULL, "compute_persistence() must be called before persistent_betti_numbers()"
        return self.pcohptr.persistent_betti_numbers(<double>from_value, <double>to_value)

    def persistence_intervals_in_dimension(self, dimension):
        """This function returns the persistence intervals of the complex in a
        specific dimension.

        :param dimension: The specific dimension.
        :type dimension: int.
        :returns: The persistence intervals.
        :rtype:  numpy array of dimension 2

        :note: intervals_in_dim function requires :func:`compute_persistence` function to be
            launched first.
        """
        assert self.pcohptr != NULL, "compute_persistence() must be called before persistence_intervals_in_dimension()"
        piid = np.array(self.pcohptr.intervals_in_dimension(dimension))
        # Workaround https://github.com/GUDHI/gudhi-devel/issues/507
        if len(piid) == 0:
            return np.empty(shape = [0, 2])
        return piid